3D VISUAL ENVIRONMENTS FOR ROBOT TRACKING

Ambrogio M., Caramagna A., Grillo J., Presti C. Lo, Palermo D.
ISA Catania Student Section

Department of System Engineering and Automatic Control

Faculty of Engineering, University of Catania, Italy
Abstract
The aim of the paper is the localization of a robot in a square room with a dimension 6m x 6m. The environment is obstacles free. The localization uses a Bluetooth access point, and provides a visualization in a 3d environment.

In order to make easier its development, the project has been divided in two parts, the first one faces the problem of the localization and communication between the various access points and the robot, while the second one deals with to elaborate the coordinates obtained in order to visualize its position.

We will show as the problem of an exact localization is not currently feasible because of the required hardware of the actual Bluetooth devices. So, we have chosen to investigate mainly the second part of the project realizing a more accurate visualization structure with the insertion of some obstacles.

I. LOCATION
The used localization system is based on the approach of distance triangulation of the values between the mobile device and the fixed stations present in such environment.

With respect to the distances, these can be obtained using the solution based on the location technique called RSSI (Receiver Signal Strength Indicator) and on the TPL (Transmit Power Level). The access points obtain this information from the mobile device. They evaluate approximately the distance, which subsequently they send to the master, which will deals with the evaluation of the position of the robot.

Such measurements have been performed using the HCI commands of the stack bluez under Linux mandrake 10.0.

After having performed an high number of trials and averaged the obtained results, we have discovered that the RSSI and the TPL not only do not present a linear trend, but also introduce some zones where their value does not change neither if we move around by some hundred centimetres as we can be noticed in the following figures:

[image: image23.png]
[image: image2.jpg]
Initially we use the following formula for the evaluation of the distance:

[image: image3.png]
Since the value of the RSSI nearly results constant, the use of such formula results inefficient, getting too much inadequate results. So we try to use the neural networks to determine a satisfactory model. In the following graphic we show the obtained results:

[image: image1.jpg]
With the black line we indicate the ideal trend (reference), the outlined dotted lines represent the range of admitted error, chosen around ±5%, correspondent to around ±25 cms. The blue line indicates the difference between the network output and the target. As we can see, up to a distance of around a meter we are in the admitted region, while increasing the distances the model results inaccurate returning values with a peak of maximum error equal to 33% (correspondents to around 1,65 ms) around the distance of 4,8 ms. Also this time, the obtained results are insufficient to our specifications.

The problem is given by the bluetooth hardware requirements which show the tendency to vary the value of the TPL to bring the RSSI value to zero in order to get a good quality in the data transmission. However some companies are studying the change, in hardware level, of bluetooth requirements to use it in localization indoor systems.

Then the only localization method, which can be effectuated by Bluetooth, belongs to the "proximity" type. It identifies the position of a Bluetooth device, located within a building, through the position of the access points in every room.

II. CONSTRUCTION OF 3D ENVIRONMENT
The second part of our work was devoted to the implementation of a suitable graphic environment for the visualization of the robots movements. The objects and the environments are created through 3DStudio Max 6.

During the models creation, we have fixed the center of the reference frame coherent to the center of the 3D object .

The creation of a 3D model is based on the use of elementary geometric shapes associated with some particular effects of orsion of the lines. We have respected with precision the original shapes and dimensions of the represented models.

Let's see some models:

[image: image4]
This snapshot represents the 3D structure of the closet shown before the application of the texture. On a frontal plan it has been inserted a real image of the closet that we want to represent. Once inserted the image and sending in rendering, our model will have the effect shown in the following snapshot.

[image: image5]
Since such software has been created to give a real representation of the environment that surrounds the object, particular attention has been posed on the creation of the models.

The final result is represented by the followings images:

[image: image6]

[image: image7]

[image: image8]
The objects are created and saved as files .3ds incompatible with the directxes 9.0 used for the visualization Therefore, it is necessary to make a conversion of such models in file .x, compatible with direct 9.0. This can be done through the tool Conv3ds through the command triggered in DOS:

Once the objects are defined, they are put in the folder "bin" of the software and they are automatically inserted in the list of the objects or available environments.

II. REALIZATION OF THE SOFTWARE WITH VISUAL STUDIO.NET
The Visual Studio. NET platform is the most suitable to exploit the abilities of DirectX9.

DirectX9s are the first graphic libraries for Microsoft .Net. The speed of DirectX9 for Visual Basic seems even equal to that that is had for C++, this way creating an ideal situation for all the applications that can be realized with DirectX. How an additional bonus, the understanding of DirectX9 for Visual Basic .Net means to learn to use DirectX for all platforms.

Visual Studio .NET is the platform of multilanguage programming that has in the versatility and compatibility among the programming languages its point of strength. Particularly for the development of such software we have chosen to work with the Visual Basic .Net, direct evolution of the Visual Basic 6, the first graphic library with direct support for the NET platform of Microsoft.

Direct3D is one of the libraries of DirectX9, that is devoted to the management of the graphics 3D.

Through Direct3D the applications directly interact with the system and particularly with the video card of the Pc, getting an ideal situation to draw graphic environments to high speed. This is difficult to obtain through the graphic interface of Windows which cannot be used for this type of applications.

It’s moreover necessary to add the references to DirectX, or rather to add a connection to the DirectX libraries in order to use them. For the graphics 3D the basic class DirectX and the derived class Direct3Ds and Direct3DX suffice.

[image: image9]
The object device
A Device is the object that directly checks the screen and it is the main point for the graphics 3d with Visual Basic.Net. Once created the Device, the application will directly be connected to the system and will gain the control of it.

This object includes numerous features:

· BackBufferCount: memory area of the video card where the image is stored.

· AutoDepthStencilFormat: it is a memory area for the representation of some information. Among them, for instance, the depth of the 3D objects.

· DeviceWindowHandle: it is a pointer to a control. DirectX needs an object of reference for its management.

· Windowed: If setted to true performs in window, otherwise to full screen.

· BackBufferWidt BackBufferHeight: to set the resolution of the screen.

· BackBufferFormat: colours of the resolution.

The 3D graphics are a system of three-dimensional visualization of objects that they are positioned on the screen following a Cartesian plan with three axes X,Y,Z.

In 3D graphics an object, as for instance a three-dimensional character, is a geometric figure entirely composed by triangles called "polygons."

[image: image16.png]
The triangles are composed of vertexes or rather 3 points positioned in the space where they form the figure. They bring with them a whole series of information for every thing that can useful in a 3D environment as for instance Texture (images that cover the polygons that form an object) and on the way according to which these reflect the light.

The objects composed by the polygons are moved all together from the DirectX libraries.

The control's system used in DirectX and valid in the three-dimensional geometry is the matrix. A matrix is a collection of numbers (in the case of DirectX of 4x4) that allows to plan the exact position of an object, inclusive rotations and resize.

Also the television camera and the formulation of the Cartesian plan are controlled by matrixes. DirectX includes a long series of useful instructions for the management of matrixes, beginning from a variable that represents a matrix, the object Matrix.

The television camera is represented through a matrix called "View Matrix", this has passed to the device through:

device.Transform.View = ViewMatrix

To set a television camera we use an instruction that needs another variable, "Vector3" that is allocated through the instruction:

device.Transform.View = Matrix.LookAtLH(New Vector3(0, 0, -30), New Vector3(0, 0, 0), New Vector3(0, 1, 0))

The heart of our display device is the 3D motor , implemented with Visual Basic.

The position of an object is represented through the MatWorld, a matrix that is continually changed.

Having to face the necessity to rotate the objects along the directions of the three axes, also representing the movements in the 3 dimensions, maintaining constant the proportions of the objects a subroutine has been implemented. This subroutine directly takes all the values related to the movements and performs the transformations in series through the matricial calculation of 5 matrixes structured as follows:

[image: image10.wmf]1

0

1

0

0

0

0

1

0

0

0

0

1

Z

y

x

T

T

T

Matrix of translations

[image: image11.wmf]1

0

0

0

0

cos

0

0

cos

0

0

0

0

1

x

x

x

x

sen

sen

q

q

q

q

-

Matrix of rotations along x axis

[image: image12.wmf]1

0

0

0

0

cos

0

0

0

1

0

0

0

cos

y

y

y

y

sen

sen

q

q

q

q

-

Matrix of rotations along y axis

[image: image13.wmf]1

0

0

0

0

1

0

0

0

0

cos

0

0

cos

Z

z

z

Z

sen

sen

q

q

q

q

-

Matrix of rotations along z axis

[image: image14.wmf]1

0

0

0

0

0

0

0

0

0

0

0

0

Z

y

x

S

S

S

Scale Matrix

IV. THE PROBLEM OF COLLISIONS
One of the main problems to be solved in the realization of a 3D motor is related to collisions.

The correct management of the collision event among mesh, guarantees to our visualization program, to inform the user about possible problems in the positioning of the object inside the environment for the localization.

Among the several possible methods that can be used to detect the collision among mesh. One of the most simple and effective is that to surround the moving object with a rectangle around its barycentre.

We are able to use a rectangle to surround an object since DirectX offers one variable to memorize the rectangles: the type RECT. This variable doesn't serve only for some definition of DirectX but also for the collisions of the objects. It exists in fact an API of windows that checks two rectangles and detect if they collide. This method is comfortable in 2D circle but also in 3D has provided good results. To use this function we must declare it in a form:

Public Declare Function IntersectRect Lib "user32" (lpDestRect As RECT, lpSrc1Rect As RECT, lpSrc2Rect As RECT) As Long

Given two right-angled R1 and R2 containing the data of two objects to be made, a collision is detected if

IntersectRect (p,R1,R2) <> 0 z

p is another rectangle in which the function will memorize the zone of intersection among the rectangles.

[image: image15.png]
It is possible to use more rectangles to increase the precision. The method is excellent above all for objects that a shape almost rectangular.

V. CONCLUSIONS
In this paper we presented a study for the localization of a mobile robot.

The use of Bluetooh has shown that it does not allows a precise localization of the robot. In any case, the graphic environment we developed has provided very good results.

The software, after the data from a text file, allows us to represent in 3 dimensions the movements of an object.

This grants a total portability of the program, that allows therefore wide use in the area of the 3D representation.

The search of the "portability" offers the user various and different choices around the visualization parameters.

As a consequence of this politics of we can increase the environment to more than a single room.

REFERENCES
[1] “Wireless Ethernet Compatibility Alliance” - http://www.wirelessethernet.org
[2] “Coordinate Systems Overview” – P.H.Dana http://www.colorado.edu/geography/gcraft/notes/coordsys/
[3] “A Framework for Indoor Geolocation using an Intelligent System” – Chahé Nerguizian, Charles Despins, Sofiène Affes http://www.wlan01.wpi.edu/proceedings/wlan44d.pdf
[4] “Location Systems for Ubiquitous Computing” – J.Hightower, G.Borriello www.cs.washington.edu/homes/jeffro/pubs/hightower2001location
[5] “Indoor Super Resolution TOA Measurement in Frequency-Domain” –
X. Li, K. Pahlavan http://www.wlan01.wpi.edu/proceedings/wlan55d.pdf
PAGE
36

[image: image17.png][image: image18.png][image: image19.png][image: image20.png][image: image21.jpg][image: image22.png]_1174233102.unknown

_1174233455.unknown

_1174233520.unknown

_1174233363.unknown

_1174232880.unknown

