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Abstract

In this paper an alternative approach to non-linear predictive control is presented. It is based on iterative linearisation of the model response so that the same closed loop responses as in the pure non-linear approach are obtained but with reduced computation times and  more efficient optimisation tools. The method is applied to a high purity distillation column and some results are presented showing the behaviour of the proposed algorithm.
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I. INTRODUCTION
MPC is now recognised in the industrial world as a prove technology, capable of dealing with a wide range of multivariable constrained control problems. Nevertheless, most of the industrial controllers are based on linear internal models which limits its applicability. Because of it, non-linear model predictive control NMPC has received a lot of attention in the latest  years, both from the point of view  of its properties (Chen et al. 1998) and implementation. Referring to this last aspect, the main drawback is the computational burden that NMPC implies. While linear MPC with constraints can solve the associated optimisation problem each sampling time using QP or LP algorithms, for which very efficient codes are available, NMPC relies on non-linear programming (NLP) methods such as SQP, that are known to be far more CPU demanding. 

For sequential solutions, the model is solved by integration at each iteration of the optimisation routine. Only the control parameters remain as degrees of freedom in the NLP. Simulation and optimisation calculations are performed sequentially, one after the other. The approach can easily be coupled with advanced simulation tools. In contrast, simultaneous model solution and optimisation includes both the model states and controls as decision variables and the model equations are appended to the optimisation problem as equality constraints. This can greatly increase the size of the optimisation problem, leading to a trade-off between the two approaches. In both cases, computation time remains a difficulty in order to implement NMPC in real processes.

In order to overcome this drawback several alternatives to standard NMPC have been proposed like NMPC techniques based on model linearization. An overview of these can be found in (Bequette, 1991; Henson, 1998; Morari and Lee, 1999). Another approach (De Keyser, 1998) is considered in this paper, which uses a local linearization of the process at each sampling time to compute an ‘optimized response’, analogous to the ‘forced response’ of linear MPC methods, and the procedure is applied iteratively until the same non-linear solution is reached.

This paper describes the iterative linearization technique and compares a NMPC algorithm using the sequential approach and a version of the iterative linearization applied to a nontrivial process control example. Section 2 presents the process, an industrial distillation column of an alcohol plant, and its control objectives. Section 3 deals with the predictive controller algorithm, while section 4 shows several results of experiments with both types of controllers. The paper ends with some conclusions.

II. PROCESS DESCRIPTION
2.1 Distillation column

Distillation is an important process widely used in industry. In our case we focus he attention to a high purity distillation column of the sugar industry. A schematic of  the column can be seen in Fig.1. The feed is a mix of three main products: water, alcohol and propanol,  and the alcohol is extracted from the accumulator and , mainly, using a top lateral extraction. The column has 75 plates and besides being a multi-component one, deals with azeotropes, which makes it more complex.

The regulation goal is keeping the ethanol molar concentration of the column-bottom and the water molar concentration of the column-top close to its set points. To obtain this control objective two manipulated variables were selected: the lateral neutral alcohol flow and the steam inflow to the reboiler. Other variables are kept under control by local PID controllers: the level in the column bottom by manipulating the outflow, the accumulator level by manipulating the reflux and the head column pressure by manipulating the refrigerant flow to the condenser. Flows of steam to the reboiler and neutral alcohol are maintained using PID controllers.


[image: image1.png]
Fig. 1: Simplified sketch of the Neutral Alcohol Distillation Column.
2.2 Plant modeling

A detailed model of the process has been developed and tested with real data. The main hypothesis considered are listed next:

· A non-constant vapour flow is considered, and it is calculated on the basis of the energy balance assumed for each of the plates.

· Total pressure loss of the column is distributed linearly among all the plates.

· The flow of liquid is calculated on the basis of Francis’ formula for sinks.

· The vapour and liquid that flow from the plate are in a state of thermal equilibrium, at the same temperature.

·  The vapour and liquid that flow from the plate are not in phase equilibrium owing to the definition of a Murphree efficiency.

· The vapour-liquid equilibrium is represented taking into consideration:

· Vapour phase as being ideal

· Liquid phase as being not ideal: Wilson’s model is employed to calculate the activity coefficient

The equations that represent the behaviour of a generic plate are the same for the complete column:

· Overall balance of material:

[image: image2.wmf]n

n

n

n

n

n

n

S

V

L

F

V

L

dt

dM

-

-

-

+

+

=

-

+

1

1

         (1)

· Overall balance at component j:
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· Overall energy balance:
The energy balance can be reduced to an algebraic equation which is used as the basis to calculate the flow of vapour from the plate.
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· Temperature calculation:
The bubble temperature is that one which is in equilibrium with a known composition of the liquid at a determined pressure which is also known.
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· Equilibrium ratio between vapour-liquid phases:
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· Total pressure on plate n:
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· Flow of liquid from plate n:

The flow of liquid is calculated on the basis of Francis’ formula for segmented sinks:
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Therefore, the flow of liquid from one plate onto the plate below is:
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[image: image10.png]
Fig. 2: Sketch of a Generic Plate.
The model involves 2700 equations and 157 states and was simulated and tested using the EcosimPro modelling and simulation language.

III. PREDICTIVE CONTROLLER
Nonlinear predictive control (NMPC) is a natural extension of the linear MPC technique. The algorithm is also based on the use of an internal plant model, which captures the main process characteristics. As mentioned in the introduction, two different formulations of NMPC were compared, a direct NMPC and a iterative linearization technique.

3.1 NMPC Controller

The objective of the non-linear model predictive control (NMPC) is finding the future optimal manipulated variable sequence in order to minimize a function based on a desired output trajectory over a prediction horizon. The cost function is the integral over the squares of the residuals between the model predicted outputs ypred and the set point values r over the prediction time N2( (where N2 is the prediction horizon and ( is the sampling time). A typical formulation is
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The change in the manipulated variable u is also included in the minimization. The minimization (9) is done subject to the continuous model equations and to the typical restrictions applied on the manipulated and controlled variables:
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Of the Nu moves optimal control sequence, only the first component is implemented.
Within this schema the continuous formulation of the process model is used to calculate the predictions ypred(t) needed for the minimization of (9) using a dynamic simulator (Fig. 3).

In this formulation, the model equations are not explicit restrictions to the optimisation problem, being the manipulated variables the only decision variables. Path constraints are implemented as penalization functions when a constraint is violated in the simulation block. 

The controller law solution leads to a non-linear programming problem, which could be formulated generically as a real time minimization of a non-linear function subject to constraints.

3.2 Nonlinear iterative EPSAC formulation 

The key idea of this formulation is to approximate the non-linear predictions by iterative linearizations around future trajectories, so that they converge to the same non-linear optimal solution.

For this purpose, the future sequence of manipulated variables is considered as the sum of a basic future control scenario, called 
[image: image13.wmf]0

),

/

(

³

+

k

t

k

t

u

base

 and optimizing future control actions 
[image: image14.wmf]1

N

k

0

),

t

/

k

t

(

u

u

-

£

£

+

d

:


[image: image15.wmf])

/

(

)

/

(

)

/

(

t

k

t

u

t

k

t

u

t

k

t

u

base

+

+

+

=

+

d

     (11)

In this way the output predictions can be considered as being the cumulative results of two effects:
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The component 
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 is calculated using the non-linear model and the known (postulated) sequence 
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 as the model input. The other component 
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 is the cumulative effect of a series of impulse inputs and a step input (De Keyser, 1998).

The optimisation problem, the minimization of J subject to the constraints (10), is solved with simple quadratic programming techniques (QP).

To reduce the number of iterations, the initial value of 
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 is important. A simple and effective choice (De Keyser, 1998) is to start with the optimal control policy derived at the previous sample 
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. In this paper, this strategy has been used.

IV. SIMULATION RESULTS
Several simulation tests have been carried out to compare the standard NMPC with the non-linear EPSAC from the point of view of the computation time as well as the efficiency.

The sample period is 5 min whereas the other parameters are N2={15,15}, Nu={1,1}, (={5,1}, (={0,0}.

For the manipulated variables, the constraints were fixed to 
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 and their changes were limited to 
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The controlled variables are constrained by 
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In these simulations it is assumed that the full state measurement is available at time tk, i.e. the initial condition is known at each iteration.

Setpoint tracking

During a simulation time of 4.5 hours, several step changes have been considered for both controlled variables. The performance obtained by both controllers was similar. Fig. 4 shows how the controller tries to make the molar concentration of ethanol at the bottom of the column to track the setpoint change from  0.0225 to 0.0246 at t=0.2 hours. The response of the second controlled variable, the molar concentration of the water at the top of the column, to the change of its reference from 0.1809 to 0.1654 at t=1.8 hours, is represented in Fig. 5. The two manipulated variables are represented in Figs. 6 and 7.

But the associated computational efforts indicate a clear advantage of the EPSAC controller. The computation time of the whole simulated experiment was almost 12 hours, whereas the standard nonlinear controller has taken approximately 53 hours. The simulation has been performed using the simulation language EcosimPro in a PC PentimIII,  800 MHz computer with 512 Mbytes of RAM.
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Fig. 4. Set point tracking of the first controlled variable (molar concentration of ethanol on the bottom of column).
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Fig. 5. Set point tracking of the 2nd controlled variable (molar concentration of water at the top of the column).
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Fig. 6. The 1st manipulated variable (neutral alcohol flow).
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Fig. 7. The 2nd manipulated variable (steam inflow to the reboiler).
V. CONCLUSIONS
Two non-linear model predictive controllers have been compared in a distillation column. One of them the non-linear EPSAC, based on an iterative linearisation approach has shown to be a promising technique in reducing computation time, cutting it to less than a fourth. However, in the process considered here, the time required to solve the predictive control problem every sampling time is still too high to implement the controller in real time.

The proposed method does not require to linearize the non-linear model, but only to compute its impulse response, which can save a lot of computation in cases like the one presented here.

Another advantage of the non-linear EPSAC refers to the use of codes more efficient such as QP instead of  SQP methods. Further efforts are required to bring NMPC into practice when based on complex models like the one presented in this paper.
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NOMENCLATURE
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Liquid mass accumulated on plate (kg).
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Liquid flow (kg/s).
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Vapour flow (kg/s).
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Feed flow (kg/s).
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Lateral extraction (kg/s).
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Mol fraction in liquid phase.
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Mol fraction of in vapour phase.
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Mol fraction in feed current .
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Enthalpy of the liquid (kJ/kg).
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Enthalpy of the (kJ/kg).
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Activity coefficient.
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Vapour pressure (bar).
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Total pressure (bar)
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Pressure drop (bar)
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Flow of live steam in the reboiler (m3/s)

K
Constant of proportionality (m3/bar·s)

how

Height of the liquid above the crest of the sink (mm)

Q
Liquid which falls from the sink (m3/s)

Lw
Length of the sink (m)

Subscript

j
species

n
stage

*
molar fraction of vapour phase in equilibrium with 
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