BLUETOOTH HANDOFF DELAYS: SOME IMPROVEMENTS EVALUATIONS
Trapani G., Baldacchino D., Latella N.
Catania section ISA Student Members

Department of Informatics and Telecommunications Engineering

Faculty of Engineering, University of Catania, Italy

Abstract

In this paper we faced the handoff in Bluetooth technology. We developed a simulation software to evaluate the times related to this problem.

Next, we created a specific structure able to reduce and eliminate, partly, the delays during the handoff process.

I. INTRODUCTION
The handoff is the time needed to a slave to disconnect from its former piconet and to connect to another one.

In this time, no data exchange between master and slave exists. The handoff hasn’t a well defined duration, but however it is tightly tied up to the specifications of the same protocol.

To our ends, we have thought about considering the handoff as divided into two parts: the first one is defined first level handoff, the second part is the second level handoff.

The first level consists in the necessary time needed by a Slave to detach from the master of the piconet where it was connected. The Bluetooth specifications set this time equal to 20 seconds. During this time the Slave doesn't receive any "packets" from the master, before considering itself unhooked by that piconet.

After this 20 seconds, the second level handoff starts and it is varying from a few seconds to some minutes, during which the Slave starts to connect to another master.

Our goal is to lower first and second level Handoff times, without denaturalizing the Bluetooth specs too much.

[image: image2.wmf]HANDOFF

In the last years handoff problem has been deeply studied. For our studies we used profitably [2], [3], [4] approaches: we will describe them shortly.

II. STATE OF ART
After having clarified what the problem is, we looked at the solutions proposed by some researchers in the past years.

Baatz [2] focused attention on a particular kind of scenario, the public access areas called Bluetooth pubblic access. In a BLUEPAC area, mobile Bluetooth devices should be able to move between different access points while still being addressable via the same IP address.

A first tool used is the Cellular IP Protocol (CIP), that allows the datagram IP addressing to moving devices; by this protocol the units can change the access point frequently. But CIP solves the “micro-mobility” problem within Bluepac networks only.

Then, the paper analyzed a layer setted between the IP and L2CAP: the IP Adaptation Layer. It provides a data link layer that makes the slave able to move, hiding Bluetooth specific details from IP.

Finally, handoff delays have been studied, paying particular attention about the duration of the inquiry. Although the times of this specific procedure can be considered adequate (from 1.1s to 2.2s), the principal problem is not resolved because Baatz approach is referred to a particular situation, hooking or unhooking the Slave manually and omitting, in such way, a whole series of parameters (as the time-out necessary to discovery the breakup of the link) however existing in the original Bluetooth protocol.

Steelant [3] describes a possible solution to the risk of link loss that happens when the distance between the moving Bluetooth device and the transmitting antenna is excessive (superior to 10 meters). In fact, when a user moves and goes away from an area covered by an antenna he comes in a zone covered by another one. The connection should be transferred in a way that the user has an uninterrupted connection.

[image: image3.png]
This technique presumes a network of fixed antennas that are interconnected with some kind of network (ethernet, for example). In a second phase this fixed network can be expanded by a mobile network. In this case some mobile devices are used as a bridge to relay the packets between other mobile devices and the fixed network. Roaming has to provide functionalities to mantain the connection by transferring the communication to another device.

This can be done by two ways: a permanent link on the IP level, or exploiting L2CAP level.

The big advantage of implementing the roaming on the L2CAP-level is that almost all communications to a Bluetooth-device passes through the L2CAP-Layer. Since not all Bluetooth-devices are equipped with an IP-layer (most PDA’s are not) the implementations on the L2CAP-layer gives a more versatile functionality.

Unfortunately there is nothing mentioned about roaming in the Bluetooth Specifications; so in the assumption that most devices will have the L2CAP layer implemented in software, it be possible to change it. The solution described in this paper implements an extra RELAY layer between the L2CAP layer and higher layers.

This layer has to trap every packet sent from the higher layer to the L2CAP layer and vice versa. The relay layer must then decide whether to send the packet through, or send the packet to the relay layer on another machine, where it will be sent to its respective

L2CAP or higher layer. From a theorical point of view, that permits to distinguish a normal connection and a relayed one, but from a practical point of view the higher level applications don’t know that the connection is relayed because they will have the impression to still communicate with the remote Bluetooth Device directly by their own Bluetooth Device.
[image: image4.png]
The paper describes also the relaying function, that provides a permanent connection between a mobile device and a device in the fixed network. The difference is that now the relaying will be performed by another mobile device. Suppose that a mobile device is connected to a fixed device, but the link quality is bad. First, the mobile device will check if it can transfer the connection to another fixed device. But if one cannot be found, it will look for a mobile device that has a good connection to the fixed network and that supports the Relaying functionality. The mobile device will then request a relayed connection to this other mobile device. When this is done the higher layers of this mobile device will be able to continue their connection with their previous Master on a transparent way as if the connection were not relayed.

[image: image5.png]
The key factors in [Kansal, 2002] that we want to underline are two: the planning of a new access mechanism, defined mobile Bluetooth Public Access (mBPAC), and the performances evaluation guaranteed by the use of a protocol to manage the handoff based on the architecture mBPAC. The mBPAC architecture comes from the CIP (Cellular IP) one, modifying it to improve the mobility. The solution changes the CIP to fit Bluetooth: in this way the time of handoff is reduced. The handoff mBPAC protocol is used to obtain a fast handoff, with low delay and good performances using the bandwidth inside the access network. The protocol eliminates with success the inquiry procedure and it understands the link loss speedly. Handoff evaluation is based upon two steps: the detection of link loss and restoration of connection to another access point. To understand the link loss the method used is based upon mBPAC polling scheme performed by the access point and the mobile devices linked to it. The polling scheme is round robin and the master asks to every slave, in sequence. Data request can be different to every slave and so single slot packet can be used when a low data rate occurs or multi-slots packets in the other cases (they last 3 or 5 time slots). To find link loss, the master uses a timer and the connection is broken if it has no answer to the poll during the timeout period. The mobile device follows a similar procedure to find the link loss. Both the access point (master) and the mobile devices (slaves) consider the timeout value as the max number of slots that are between two next poll times. When the link loss is certain, a new connection has to be established. The Neighborhood set of an access point A is defined as the set of all access points into whose range a mobile node may have ventured when it is in the range of access point A. As soon as loss of connection is detected, the current access point sends the clock and address of the missed mobile node to all the access points contained in its Neighborhood set.

[image: image6.jpg]
III. THE “SIMUBLUE” SIMULATOR
Before starting the description of the new approaches we developed in order to reduce the delay related to handoff operations in Bluetooth, we present a simulator we used to this aim.

We called it “Simublue”.

The language used to write our simulator is C++.

The target was providing a simple and intuitive user interface to evaluate the handoff problem and our solutions to that.

The hearth of the simulator is the implementation of page and inquiry procedures as they are in [1]: they are fundamental to create connections between master and slaves within a piconet.

The implementation of page into our simulator is based upon two appearances: the evaluation of the number of frequencies used during the procedure and the evaluation of the paging time as the result of the product between the number of frequencies and the basic unit (625 microseconds slot).

Shortly, we implemented a whole of arrays in which every vector is associated to a specific sequence of hop frequencies.

The slave is associated with a vector containing 32 frequencies; the master is associated with two vectors each of them containing 16 hop frequencies that identify its A and B train. Of course, we based our work on the protocol: we put in order the vectors so that the vector related to the A train contains the 16 hop frequencies near the aforesaid one (we also simulate a certain error probability in the estimate of the clock slave), and the vector related to a B train contains the remaining 16 frequencies.

Doing that we are able to modelize well enough the estreme robustness of the protocol: the two trains are made in such a way that it is easy that master and slave had the same frequency soon (in the A train).

When the frequencys is the same, master and slave start exchanging informations to continue the connection procedure. To this intention, we considered the possibility that in this phase the FHS packet from master to slave or the next answer packet from slave to master doen’t arrive in the timeout; in this circumstance, master and slave come back to the page and page scan substates respectively, starting again the procedure.

[image: image7.png]
The inquiry is the procedure done by a Bluetooth device not still linked to other units; likewise, the devices will enter the inquiry scan substate at well defined moment and in this way they will be recognized by the new master of the piconet.

According to the protocol, every unit can be either master or slave in a net: it depends on the instants in which the previous operations are made.

Instead, our simulation has elements with roles already defined: one of this will perform the inquiry and the other the inquiry scan; this simplifier hypothesis, and we will understand that by the obtained results, doesn't jeopardize the validity of the software.

The clock that every unit has, a very important element in a protocol all based on exact time parameters, has been omitted from the simulation: the motivation behind this choice is purely a practical one.

We have realized, in fact, that it was superfluous to foresee an element that articulated the time parameters precisely, since we would have been able to draw these knowing the state of the unity and the number of exchanged packets.

An example will explain the concept: we can think about a master linked to a slave only, exchanging with it mono-slot packets. If starting from instant 0 two packets arrived to the master, we can be certain about the fact that 2.5 ms has passed: all we need is the real behavior of the unit in a specific state.

Now the previous choice is clear: the behavior of the units in the inquiry and in the inquiry scan substates is well known and only little calculations with the packets we need to understand how much time has passed.

The packet becomes the important unit of our application.

When the simulation begins, the master starts using its frequencies as we can read in the specification: 32 total frequencies are divided into two trains made of 16 elements; the first train is repeated 256 times, the second one is repeated 256 times, then the first one is repeated another 256 times and so the second train.

10.24s will pass if any slave answers during this period.

To do that, the software doesn’t scan any array, while it happens in the page procedure, but only specific variables are increased in the right way.

According to the specifications, a device that wants to receive any slave in its upcoming piconet starts an inquiry procedure periodically in an automatic way: this operation lasts 10s and it is provided every minute.

So the interval between two inquiry procedure has to be random: this is done to avoid that two unities syncronize their inquiry procedure.

In the best circumstance, 50s will be between two next inquiry procedures, in the worst this value will become 100s. The simulation considers this time and it is added to the total time.

The behavior of the slave is a bit complex.

If the device is listening, it will choice a frequency from a set made of 32 (the frequencies of the two train of the master are the same) and it will depend on its own clock; the frequency is always the same during 18 slots (scan_window) and the next one is used in the following window; the distance between two windows is 2030 slots. If the slave listens to a packet sent from the master during a scan window, it will not answer: that is done to avoid two simultaneous answers by the slaves in the same time. Often, “generic unit” can answer to the packet.

The slave doesn’t answer and it will enter in STAND-BY or CONNECTION state for the duration of RAND slots (this value is between 0 and 1023 slots); after these slots, it will listen at the same frequency for 128 slots.

If the device receives a second packet from the master it can already start the page procedure, but our simulation repeats two times what it is written first (exchanging in this way 4 packets, as we can read in the specification).

Really, this subject is not so clear in the protocol specs, so we choose to do in that manner being based on the average number of answers by the slave in 1.28s.

If during the 128 slots window the slave doesn’t receive any response, the unit enters the CONNECTION or STAND-BY state: we implemented this behavior and the slave enters in the inquiry scan substate immediatly (using a window lasting 18 slots).

Master and slaves start their own search activity and listening asynchronously, because these depend on their clocks, that are “free-running”. For this reason we have to count the supervisionTO (20 s) and the time needed to the connection (50-100 s) early mentioned.

Another factor that we add to the total delay is the possible start of inquiry procedure done by the master when the slave is in the inquiry scan interval (this window lasts 2030 slots): our software considers this possibility using random values.

IV. OUR SCENARIOS
Goal
In this section we will study several approaches to manage handoff and we will compare the results obtained.

The simulation analyzes the times needed to constitute a Bluetooth piconet and lowers them by specific tricks.

We studied and implement different new solutions: these don’t modify deeply the Bluetooth protocol and require only some small changes.

As we will understand by the analysis of the standard modalities, the procedures allowing the slave to communicate to the master are very expensive in terms of delays: so it was necessary to create a superstructure that calculated the parameters needed to the connection. That has permitted remarkable lowering of the delays.
General and well-known hypothesis
· the unit moves to a piconet: the net has less than seven active slaves.
· the structure is really modular: the number of the piconets can be relatively large, covering a bigger area.
· every master keeps any slots for the SCO traffic depending on the kind of packet (HV1, HV2, HV3 o DV), so it is necessary to count the time needed to guarantee that transmissions. Every master supports 3 SCO link max and this is not correlated to the number of slaves being in its piconet.

To implement this feature we created a function that works in the following manner: two random numbers between 0 and 3 are chosen: the first number is relative to the number of SCO links existing in the piconet, the other one is relative to the kind of packet that characterize the link. By a specific algorithm we calculated a further contribution to add to the total delay.
Case 1: Standard procedure
The slave has just abbandoned the piconet which first was connected to. To recognize the effective link loss 20 seconds pass (supervisionTO). After this time we supposed that the slave is into the range of the second master, this can be in the inquiry state or in the random time (between 50-100 seconds) existing in two next windows: other time passes.

After 20 seconds the slave starts the inquiry scan; it happens often that the master has not started its operations, so in the simulation we add 2030 slots max (the number is random) because the beginning of the two previous procedures doesn’t happen at the same time.

The master and the slave have no clock synchronization and for this reason the frequencies used to perform the inquiry and the inquiry scan can be different: the slave takes less then 10 s to finish its procedures (sending a FHS packet that contains the clock and the BD_ADDR): this time is small but still important.

Studying the basic case and analyzing the results, we obtained any hints to improve the time performances.

[image: image8.png]
Average value: 78s

In the figure we can see a trend showing the limits of the basic protocol. Because of the many random contributions, the repetitions independent one from another have important delays and show big oscillations near the average value.

It is clear that using some support tools we will reach very interesting results.

Case 2: Addition of a buffer and a backbone
In this case, we suppose that every slave is provided with a buffer that memorizes data elements and we also suppose that a backbone is added to permit the masters of the different piconets to exchange useful informations.

In this scenario, when a slave goes away from the range of a certain master, it receives data by the master more speedly than it could read: in this way, when it enters the second piconet, it has a reserve of datas to use.

Our hypothesis considers a random number of active slaves and only one moving, a buffer that is filled when the slave starts going away (this process finishes when the master disconects the moving slave because a certain parameter is under the threshold: this time is choosen randomly), a data flow to the buffer equal to that one the slave received when it was scheduled normally (in this way, if the exit process from the piconet lasts 3 s, the slave will have a 3 s reserve of datas and so it will receive the same amount of datas both into the piconet and outside).

Of course all the hypothesis are true only when the slave wants not real time datas by the master; we can understand this imagining an audio/video data flow from a not-live event. For this reason the backbone is important: the master1 can exploit it to communicate to the master2 the id number of the last sent packet (also counting the packets to the buffer), so the master2 starts sending not duplicated datas.

We compare the average values of this trial and the previous one: our suppositions are correct, in fact the buffer and the backbone permit a reasonable lowering of times, but it is susceptible of next improvement.

Particularly, the introduction of a buffer doesn’t provide a clean amelioration in the performances; even the backbone can’t solve the problem.
[image: image9.png]
Average value: 65s
We gotta say that the analysis of the individual contribution to total delay hints using different methodologies: between two different inquiry procedures, the two random waits are so prominent that alternative solutions are required.

Case 3: Use of link_quality parameter and a server
Every master has a specific link to an elaborator (we will call it server) providing the collection of any parameters: particularly, it memorizes the link quality value that every active slave has at every moment during the connection.

We can assume that the server monitorizes all the piconets it is controlling, constantly (we can’t count the sample time and the data elaboration time): the server knows the number of slaves existing in every piconet, the state of every slave and also it collects, as above mentioned, a parameter relative to the signal power coming from the slaves.

We used the link quality parameter in this way: if its value (the range is between 0 and 255) tends to lower and a specific threshold is reached, then it is probable that the slave is going away from the master and it is in the near piconet.

If the mobile slave has just left the first or the last piconet in the structure then the server will comunicate to the near one to start its listening procedures; the main fault of this approach it is that if he piconet is between 2 other piconets, the link quality parameter can’t give informations about the direction of moving: then it is necessary to send a signal to 2 piconet rather than only one. In this way 2 piconet are locked doing inquiry procedures. Looking at the link quality allows the master of the piconet not to perform the inquiry procedure as in the specification, in a senseless way: instead the inquiry procedure can start at the right moment, that is when the slave is moving.

Besides, the control of the threshold let the slave not to wait 20 seconds after which it is disconnected: it’s the master to decide when the slave is disconnect and, particularly, that will happen when it will be into the area covered by 2 antennas.

In this case, the lowering of the times is important: we have to remember that during the inquiry procedures no communication to active slaves is possible and if the master performed the inquiry without reason too many bandwidth would have lost.

But even if a slave was in the inquiry scan substate the master would begin the known random modalities the same and the moving device would wait an amount of time too long. Then the server will help to guarantee that the slave will wait the lowest time.
Average value: 4.5s
[image: image10.png]
As it is easy to see, in this approach the obtained results are better than the previous values. Even if the oscillation near the average value still remains, this one is lowered 16-18 times about.

This drastic lowering is justified by the absence of the supervisionTO and the random waiting between 2 inquiry procedures added to the total delay. We don’t count the supervisionTO because, thanks to the link quality parameter, the master cuts the communication off immediately when the signal is under a certain threshold. Besides, using this parameter let the server to provide exact informations to the master of the second piconet: it communicates when starting inquiry procedure, cutting the 50 ÷ 100 seconds that are between 2 different procedures normally.

Case 4: Use of the link_quality parameter and the clock
Analyzing the previous case we can easily understand that the inquiry is the main contribution to the total delay. Knowing the performed operations by the master and slaves, time is wasted to synchronize two frequencies; there are no mutual informations, so the device will use a frequency not correlated to the other one. The role of the server, in this context, becomes more important: it will monitor the link quality parameters as it did first, but it will also know the native clock of every slave. The situation is this: the slave starts going away and at a certain moment it will be disconnected from the first piconet at all. In the same instant the server, the coordinator of the operation, communicates to the second master to begin the inquiry; this one will not send an id packet containing the GIAC at any frequency, but it will use the frequeny used by the slave in that instant, thanks to the fact that it knows its clock.

The risults are remarkable; from a theorical point of view this structure let the inquiry procedure becoming page. We preferred not to add the contribution of inquiry to the total delay because the possibility to use a wrong frequency is really small.

Total delay. Average value: 0.9s.

[image: image11.png]
Page time

[image: image12.png]By this solution we obtained an ulterior lowering of the average value. This result was predictable, because in the simulation the server manteins many informations about the clocks of every slave being in every piconet.

This approach makes the time spent to perform the inquiry equal to zero; in the normal cases this time assumes average value equal to 3 s, but it can also reach 10 s. Comparing the two graphs above (page, total delay) they are different. This is due to the fact that, in the total delay graph, there is a contribution of page but the presence of SCO slots is really important: at regular intervals, the SCO slots stops the same page. The two cusps in the total delay figure depend on SCO slots.

Case 5: Use of link_quality parameter and buffer
We face the problem in such a way that the solutions are modular and we can combine them easily.

Now we used two elements exploited first and we get the following observations. In the specific situation the master of the piconet the slave is leaving analyzes always the link quality parameters. When it will understand that a unit is leaving the net, the master will try to favor this, because it knows the delays the slave will face.

The master will change the schedulation of every slave in an inversely proportional manner respect their number: the more they will be, the less they will be damaged. We gotta say that we can operate this way when the slave asks not real time datas to the master.

So the slave will receive from the master datas speeder then it can read and it will use them when it’s going to the other piconet.

Our hypothesis are: a random number of active slaves and only one moving, a buffer that starts to be filled when the slave is going away (this process stops when the master disconnects the unit because it is under the threshold: this time is random), a data flow to the buffer equal to that the slave used when it was scheduled normally (if the slave exits from the net in 3 s, outside it will have a 3 s reserve).
Even if this solution seems to be attractive, the contributions to the delay are many and using the buffer only doesn’t improve the situation.

Average value: 1.7
This solution is quite similar to the second, but they differ only by the buffer. From a temporal point of view, the obtained results are very different thanks to the adding of the buffer. Besides, if we compare this case and the third, we noticed that the specific case gives more important delays. But not always the case 3 will give better results. In fact, the use of the buffer i.e. preferible when the number of slave is sufficiently high so that the memory can be filled. But this information is, obviously, unknown a priori.
Case 6: Use of link_quality parameter, buffer and clock

Using all the techniques allows to have the best results. The use of the buffer must be carefully: it is possible to image any cases in which a slave becomes an active member of the second piconet even if its buffer is not emptied, because the inquiry procedure is not performed thanks to the knowledge of the clock (all the other contributions are equal to zero thanks to the link quality parameters).

The second master should known how many reserve the slave has so to schedulate the unit correctly, that is only when this time passes. To perform these evaluations the slave estimated speed is to be known and also other element we don’t care about because relative to the connection state.

[image: image1.png]
Average value: 0.6s

This scenario gives the best results, as we easily foresaw. This solution is similar to the third (only a buffer is) but a great number of repetitions have their

V. Conclusions
In this paper we examinated some scenarios related to the handoff in Bluetooth networks and we suggested some solutions able to reduce the time delays. The results obtained show that in this way we can improve the application fields of Bluetooth increasing its use.

References
[1] Specification of the Bluetooth System Version 1.1 (2001)

[2] Simon Baatz, Matthias Frank, Rolf Gopffarth, Dmitri Kassatkine, Peter Martini, Markus Schetelig, Asko Vilavaara (2000) “Handoff Support for Mobility with IP over Bluetooth”

[3] Jozef Steelant (2001) “Roaming for Bluetooth”

[4] Aman Kansal (2002) “A Handoff Protocol for Mobility in Bluetooth Public Access”

�

�

�

�

�

� EMBED MSPhotoEd.3 ���

� EMBED PBrush ���

� EMBED MSPhotoEd.3 ���

� EMBED MSPhotoEd.3 ���

� EMBED MSPhotoEd.3 ���

� EMBED MSPhotoEd.3 ���

PAGE
92

_1171205631.bin

_1175059338

_1171204449.bin

_1171204983.bin

_1171205436.bin

_1171204832.bin

_1171203807.bin

