CLOCK SYNCHRONIZATION OVER

A WIRELESS BASED SENSORS NETWORK
Giuseppe Avon,

Francesco Saverio Commendatore,

Gianfranco Interdonato
University of Catania,
Italy
Abstract

Nowadays wireless technology introduced a new way approach to connect in a simple and low-cost manner distributed nodes belonging to the system. Moreover clock synchronization over distributed nodes is critical for a class of time-bound applications to achieve significant results. Wireless embedded systems introduction opens a new way of distributed computing thanks to low initial and maintenance cost, hardware independence and many other advantages all packed in a small form-factor casing with near-to-laptop performance. Our application is based on Linksys WRT54G wireless access router hardware and aims to build a sensors network where each station has its own clock synchronized with a master-node clock considered as reference. In this paper we propose a simple
but effective scheme according to which each station can synchronize its own clock using wireless connection.

I. Introduction

Clock synchronization over sensor network is very important: knowing exact time reference for sensor recorded events allows refinement of existing acquisition algorithms and lead to the development of new ones. This paper deals with clock synchronization algorithms refinement and performance evaluation running under embedded systems environment. Using a bunch of acoustic sensors connected to devices providing wireless network access, all "connected" to a master node is the main purpose of this study. System is made up of an array of acoustic sensors, each one connected to an analog-to-digital converter (analog waveform to serial RS-232 digital output); digital output stream is flowed into a wireless access router which provides wireless connection to a central station. Master central station collects data streams coming from various sensors to estimate spatial position by evaluating delay between different waveform. Clock misalignment in this application could lead to incorrect position estimation and localization algorithm failure. Application for this
system could be: pipeline leakage, earthquake epicentre and other wide area localization systems.

[image: image1.jpg]

This device is a wireless access router
with a four ports 10/100 Mbps full-duplex
Ethernet switch. Linksys WRT54G leverages
are: low cost, ease of use, low power consumption and a powerful and flexible Linux embedded system. Our application is based on two components:
· Master node application;
· Slave node application.
To avoid stack crossing delay and guarantee a faster data processing, application works
using data link layer sockets due to Linksys WRT54G inability to process time-critical application.
Master module is represented by a standard personal computer while slave module is formed by two devices:
· Linksys WRT54G
· One ST7LITE3 microcontroller (analog acquisition system)

A. LINKSYS WRT54G

[image: image2.jpg]

This device is equipped with a miniPCI WM54G wireless radio module directly soldered on the mainboard and a four port full-duplex 10/100Mbps
Ethernet switch. The core is a Broadcom BCM4702 CPU supported by a RAM and a flash memory module (spec's may vary depending on hardware revision).
Our implementation is based on 2.2 revision of the hardware. Factory defaults provide a web-based configuration interface as the only way to adjust device parameters. Notwithstanding this interface provides a powerful configuring way considering consumer
typical usage, it doesn't provide a full access to the embedded Linux system (e.g. no shell login facility provided to modify os-related device configuration parameters). Among different firmware distributions:
· Third party firmware distribution;
· OpenWRT.
Third party firmware distribution descend from original Linksys distribution. OpenWRT instead starts a new firmware from scratch and this results in a stabler, powerful and fully configurable distribution.
[image: image3.jpg]Hardware Platform @ Flash RAM WLAN Switch
Revision frequency
Vers10 | Boadcom sr10@ 1 4 mp 16 Mb areaccom | ADMG9g6L
Vers 1.1 | BACOMATIOR | 4 mp 16 Mb anegrated | ApmsageL
Vers20 | BrOAcomAri2@ | g4 16 Mb aregrated | ADMBogEL
versgdrev | Broadeom 4712@ 1 amb | t6032Mp | oI | ApmeogsL
Verspz | | Broadcomsf12@ |y mp 16 Mb progieed | BcMsazs
Versag | Broadom sr12@ 1 4wy 16 Mb miearated | pemsas
Vers3.1 | POageomiTi2@ | 4w 16 Mb aregrated | gems32s
sto | S0 [| o | e | ey

B. ANALOG ACQUISITION SYSTEM
This module acquires a waveform from an analog source and converts it to a digital signal. The analog to digital converter board is made up of a ST7LITE3 microcontroller (analog input port and digital
output port conform to RS232 standard). Acquisition system is very simple: input side is connected to the sound source while output is connected to the
Linksys WRT54G serial port. Acquisition board simplicity allows a constant, low variance and predictable delay that can be successively subtracted from packet timestamp. Follows up system block diagram:

 Serial

Signal port

 Link

Analogic Acquisition wireless
System

II. STATE OF ART

In a centralized system time is unambiguous because each computer has its own clock. Achieving agreement on time is not trivial: it is impossible to guarantee that clocks ran at exactly the same frequency. This problem has an effective impact: an event that occurred after another may be assigned an earlier
time. Each device has a physical clock. Clock synchronization algorithms are mainly based on physical clocks and on logical (virtual) clocks. Physical clock synchronization acts directly on the device hardware while virtual clock synchronization acts on a variable that is continuously computed to match reference time. Physical clock synchronization can be achieved in two manners:
· External synchronization: forced by external agent;
· Internal synchronization: agreement between processes.
Internal synchronization does not imply external one. Among internal synchronization algorithms can be found two different kind of algorithms: Centralized and Distributed algorithms (they can also be distinguished in synchronous and asynchronous systems). There are several clock synchronization algorithms available for asynchronous distributed systems. Among them, algorithm synchronization considered as classical solutions are:
· Christian's Algorithm;
· Berkeley's Algorithm;
· Network Time Protocol.
A. CHRISTIAN'S ALGORITHM
Christian's algorithm is based on a central passive time server connected to UTC that, on demand, provides time reference to clients asking synchronization. Clients must periodically send a synchronization request. When a synchronization information is received, clock is reconfigured also considering network propagation delay.
B. BERKELEY'S ALGORITHM
Berkeley's algorithm is based on a central active time server and a time coordinator that:
· Periodically asks every station clock value;
· Estimates a mean value;
· Points which station must speed up or slow down its own clock by sending corrective values.
С. NETWORK TIME PROTOCOL
This protocol allows physical clock synchronization for each network client using statistical techniques to compute time data coming from various time servers. Fault tolerance is provided by using multipath data transfer and interference or data corruption protection.
Ш. WIRELESS SYNCHRONIZATION DELIVERY SCHEMA
Our testbed is composed by several WRT54G each one of the same hardware revision (same hardware spec's). Project constraints provided a synchronization error less than 100 us. Ideally, clocks should proceed with the same trend. Two approaches were used during development and testing:
· Continuos clock synchronization;
· Raw synchronization.
A. BASIC IDEA AND PROTOCOL DESCRIPTION: CONTINUOS CLOCK SYNCHRONIZATION

This approach is based on a continuos clock synchronization over a real-time wireless environment. Client-side clock must synchronize according to master clock. Periodically a timestamp frame is sent from the client to the server within a fixed time deadline. Protocol evolution key points are:
· t1: server calculates local timestamp;
· t2: server broadcasts local timestamp;
· t3: client stations receive server side timestamp;
· t4: client side clock is adjusted according to server indication.
Clock drifting between stations and time critical path variation are the algorithm loss factor. Time delay occurring between instant t: and t4 is also known as Time Critical Path. Time critical path occurs due to three system delays:
· t1 to t2 (and t3 to t4) time slice: due to operating system protocol stack crossing;
· t3 to t4 time slice: due to sync packet flight
duration. This delay depends on the client-to-server physical distance.

Time critical path duration can be statistically estimated using an internal ping implementation. Algorithm introduces a fault tolerance section to avoid failures due to a two consecutive sync packet loss. Virtual clock concept is introduced as a linear function of the physical clock: virtual clock is continuously adjusted to verge on master clock value. Moreover virtual clock function must not show discontinuity.
[image: image4.jpg]Virtual
dock

s,

Clock synchronization is achieved adjusting SC linear transformation parameters every checkpoint. Particularly, given у = mx + q as a generic line equation (y as SC and x as time), algorithm purpose is to variate m (line angular coefficient) and q (translation compared to axis initial point) parameters gradually every checkpoint to avoid discontinuity. Synchronization should succeed after Q checkpoint.
B. BASIC IDEA AND PROTOCOL DESCRIPTION: STATISTICAL SYNCHRONIZATION
Statistical synchronization purpose is to, after an initial server to client clock drift evaluation, adjust virtual client clock. Clock correction is done only if currently skewing is conform to previous mean drift calculation. Algorithm evolution is organized in two phases: a first "initial synchronization" phase and after a "continuos synchronization phase". During initial phase master node sends synchronization packets; in the meanwhile, this packet sequence is received from the client side where is started a mean drift evaluation. Once ended this cold start phase, a resynchronization algorithm is started: during this loop is verified current clock drift. There are two possible situations in which this algorithm can ran:
· Instant clock drift is near to previous phase calculated mean drift (in this case algorithm runs a continuous synchronization algorithm using previous descripted algorithm);
· Instant clock drift is a value far away previous estimation (time realignment algorithm is restarted).
Schematically, this clock synchronization algorithm can be resumed in this sections:
Server side algorithm:
· Initial synchronization phase (a packet stream oriented to time critical path evaluation is generated using local generated timestamps);
· Continuous resynchronization (timestamp continuous broadcasting)/
Client side algorithm:
· Using server received timestamp is calculated reo as reo = Tsavg — Tmavg
· Master timestamp storage/sum inTm/Tmsum
· Local timestamp storage/sum in Ts/Tssum
· d and re1 parameter are obtained as
d = Ts-Tm and rel=Tsavg-Tmavg
· If [abs(d - re1) < bound] then adjust clock on the basis of the estimate.
С. BASIC IDEA AND PROTOCOL DESCRIPTION: RAW SYNCHRONIZATION
Previous synchronization algorithms are compute bound loops: they give optimum results but are not suitable to ran on a Linksys WRT54G, heavily limited under time-critical environment due to its hardware limitations. Previous algorithm performances were not satisfactory considering our application specifications so we preferred a different way approach: raw clock synchronization. Raw synchronization instead is based on a low cpu intensive clock retrieval / assignment loop. Periodically master station broadcasts its own timestamp on an Ethernet frame, client-side process acquires timestamp information from synchronization frame to directly overwrite internal physical clock. Frame broadcast is directly driven by an high precision running loop while frame reception is driven by a spin-lock free (blocking) read loop to ensure direct clock update on frame arrival. Compute free and low instruction count loops ensure a very fast frame creation and elaboration while low size, single timestamp, layer-one frames ensure a fast and low overhead frame flight.
Synchronization frame fields are filled up with:
· Source MAC address;
· Broadcast MAC address as destination;
· Special (0xEEEE) frame tagging to ensure correct frame recognition;
· Data field.
Data field is made up of a timeval struct (two long double fields: seconds and nanoseconds) filled up with master side timestamp. Slave module is a three-threaded process and only one is involved into synchronization process. On frame reception, propagation delay is calculated and added to server received timestamp to achieve a more precise alignment.
	address
	destination
	OxEEEE
	Data field

Basic protocol scheme

Server side calibrated loop:
· Retrieve local timestamp and directly pack onto a standard data link layer frame;
· Send frames over the network.
Client side reception loop:
· Pre-loop time critical path evaluation;
· Blocking read call (waiting for sync frame arrival);
· Direct physical clock update.
IV. PERFORMANCE EVALUATION

The proposed protocols are implemented on a system consisting of a personal computer (as master time reference node) and three Linksys WRT54G (as slave node). To measure clock drift between slave nodes, the master node periodically sends a message to the slave nodes. When slave nodes receive this message, they are forced to write on a file current timestamp. Measure process was compiled and executed using a different executable to avoid interaction with the resynchronization process. After several measurements, a performance degradation was noticed, due to file writing process: writing on a file uses a slow, non time-predictable system call. Problem was solved using a temporary, pre-allocated buffer to write timestamps (instead of a file structure) and calling file write procedure once reached the end of the simulation. Results are elaborated as slave-to-slave and slave-to-master timestamp difference.
A. CONTINUOUS AND STATISTICAL CLOCK SYNCHRONIZATION
Using previous described drift evaluation techniques, we reached the following results:
[image: image5.jpg]

Graph depicts difference between server and client virtual clock calculated when master synchronization messages arrive at client side. Time difference pattern mantains within
[-80, +80] range excluding first sample value, due to initial time misalignment. Clock misalignment is due to operating system scheduling unpredictability. Serial port retriever and sample packager cause an heavy cpu usage (spin-lock loops) that reflects on peaks shown in the previous graph.
В. RAW CLOCK SYNCHRONIZATION

First of all we evaluated slave-to-slave clock drift using previous measurement approach and without using synchronization process. Presuming that on an initial time instant t = Ш, first clock position is у = yl. At the same time another clock position is у = y2. If clock frequency would be the same (assumption due to the fact that testbed is made up of equal devices), difference between functions will be the same. Clock skew approximately maintains around 50 microsecond reading clocks value at the same time on a 2.5 seconds wide loop.
[image: image6.jpg]1 57 14559241 288 557 365 453 4 529 677 658 673 721 768 817 08 97581

Using this assumptions we decided, instead of making a continuous clock correction, to overwrite physical clock value every 2.5 seconds. Clock maintains stable within error range using aforesaid interval size

[image: image7.jpg]fh

A
II il
!
T

4
I

1
1

i
A e N NS BT
L L' b)]

V’“"l

As can be noticed from the graph, clock skewing value is always within [-50, +50] range. Synchronization achieved using raw approach brought very good results compared to other.
REFERENCES
[1] K. Arvind, "Probabilistic Clock Synchronization in Distributed Systems", IEEE Trans. On Parallel and Distributed Systems, Vol. 5, No. 5, May 1994.

[2] F. Cristian and C. Fetzer, "Probabilistic Internal Clock Synchronization", Proc. of thirteenth Symposium on Reliable Distributed Systems, Oct. 1994.

[3] M. Mock, E. Nett, R. Frings, and S.Trikaliotis, "Continuous Clock Synchronization in Wireless real-time Applications", Proc. of the 19th IEEE Symposium on Reliable Distributed Systems, 2000.

[4] Y. S. Hong and J. H. No ,"Clock Synchronization in Wireless Distributed Embedded Applications", Dongguk University Seoul, Korea.
WRT54G

router

wireless

ST7LITE3

microcontroller

PAGE
27

