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Abstract 
 
Dynamic optimization  techniques are used to 

solve very interesting problems: fitting of the 
unknown parameters of a dynamic model, model 
validation, model based predictive control. In the 
EcosimPro® modelling and simulation environment, 
the performance of one optimization solver was 
analysed, and the problem of model calibration was 
studied in a systematic way.  
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1. DYNAMIC OPTIMIZATION 
 
There are many applications of optimization in 

the field of process engineering, ranging from design 
problems to advanced control techniques as 
predictive control. Sometimes, as is frequently the 
case in design problems, the decision variables and 
the process do not evolve in time but correspond to a 
determined equilibrium point, so that the 
optimization decision is a static one. On the contrary, 
there are other situations in which the variables 
concerned and the process change in time, so that the 
problem to solve is a dynamic optimization one. 

In a optimization problem with a dynamic 
system the aim is to minimize a cost function J(u(t), 
x(t)) which depends on the decision variables u(t) and 
the state variables x(t) of the process, both of them 
showing an evolution in time. The constraints 
comprise the differential algebraic system of the 
model as well as the upper and lower limits of the 
decision variables and/or others particular to  
the problem. When the decision variables are real and 
the relationship among the variables is non linear, the 
resulting optimization problem is called non-linear 
programming (NLP). 

A general problem with equality  
and inequality constraints is usually formulated as 
follows (1): 

 
 
 

minimize           J (u, x)  (1)  
       with respect to u 
subject to:     

 gm (x,u)  ≥  0 m = 1, 2, … m 
  hk (x,u)  =  0 k = 1, 2, … k 
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where x(t) are the states of the system, ŷ(t) are the 
model predictions for the measured responses of the 
system and u(t) is the vector of decision variables. 

A dynamic optimization problem can be 
solved by means of different techniques that try to 
reformulate it in terms of a NLP one, and that can be 
classified into two groups: the so called simultaneous 
methods, where the dynamical part of the constraints 
is reformulated through the conversion into a set of 
algebraic equations using either collocation methods 
or expressions for numerical integration; and the 
successive methods, based on the integration of the 
dynamic equations, being these ones the considered 
in this work. 

The decision variables to optimize and the 
cost function vary depending on the type of dynamic 
optimization problem considered (parameter 
estimation, predictive control, etc.). In this work 
dynamic optimization will be applied to model 
calibration or parameter estimation. The aim is to 
find the unknown parameters of a dynamic model so 
that the responses of the model fit as much as 
possible the experimental data of the real process. It 
is a quite challenging question as, in general, there 
always exist certain parameters that can not be known 
in a simple way (bibliography, specific 
experimentation), and that need to be estimated. 
Thus, the unknown parameters of the model are the 
decision variables and the cost function evaluates the 
distance between the model responses for a 
determined value of these parameters and the 
experimental data of the process. 

 
1.1 OBJECTIVES 
For the parameter estimation by means of 

dynamic optimization, the model of a very simple 
process was used. It consists of a tank with an inlet 
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stream and an outlet stream whose flow of discharge 
is due to the gravitational force; it is also provided 
with a stirrer and an electric resistance for heating 
(Figure 1). The assumptions considered are perfect 
mixing of the fluid in the tank, constant physical 
properties and negligible thermal inertia of the vessel. 
The model is formulated based on the material and 
energy balances (2 y 3). The measured outputs 
correspond in this case with the system states: level h, 
temperature T. The unknown parameters θj to 
estimate are 4: k friction factor of the outlet pipe (θ1), 
Uamb coefficient of heat losses to the environment 
(θ2), A vessel external surface (θ3), R electric 
resistance (θ4). The respective uncertainties in these 
parameters were supposed to be of ± 25%. 

 

 
 

Fig. 1.: Diagram of the tank model 
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where qe
 and Te are volume flow and temperature of 

the inlet stream, ρ and Cp the density and specific 
heat of the liquid, Tamb the temperature of the 
environment and V the voltage applied to the electric 
resistance. 

The experimental data of the process were 
obtained in this case through simulation by means of 
the tank equations, adding a noise signal generated 
from an ARMA model (auto-regressive moving 
average). 

 
 
2. PARAMETER ESTIMATION 
 
Before carrying out the model calibration by 

means of dynamic optimization techniques, an 
analysis must be done to determine which among the 
unknown parameters it is convenient to estimate. For 
this purpose, a systematic procedure was employed; 
in the first place the sensibilities of the model 

responses with respect to the unknown parameters are 
analysed in order to determine which ones are the 
most important; in the second place the identifiability 
of different subsets of parameters (including those 
parameters that are individually important according 
to the sensibility analysis) is evaluated; finally, one or 
several subsets of parameters to estimate are selected. 

 
2.1 SOLUTION BY MEANS OF 

OPTIMIZATION 
The approach to solve a problem of parameter 

estimation by dynamic optimization considers that for 
each value of the parameter vector θ (decision 
variables) the model yields a prediction of the system 
response (θ) with a given experiment, that is, for a 
fixed combination of the manipulated variables.  

ŷ

Real process inputs u(t) and outputs y(t) are 
sampled over a period of time t = 1, ..., N. The same 
sequence of inputs (manipulated variables) applied to 
the real process u(t) is applied to the simulated 
model. For each time t, prediction error e(t) (4) is a 
measure of model goodness: 

qe 
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and the problem to solve is to find the parameter 
values θ that minimize prediction errors through an 
experiment. It can be formulated as an optimization 
problem according to (5): 
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θ inferior  ≤  θ   ≤  θ superior (7) 

 
where J is the objective function that evaluate model 
fitness to real experimental data for the parameter 
vector θ, and the sum extends to sampled time t and 
to each of the measured process outputs i. Although 
the problem is multiobjective, it is usually better to 
adjust jointly all the measured outputs in one 
objective function. Factors γi enable to weight in a 
different way the model fit for each measured output 
according to the desired accuracy; besides, factors γi 
allow to standardize and make uniform in units the 
outputs. 

So, the objective function is formulated from a 
weighted least squares criterion. The weights γi are 
usually specified as the reciprocal of the variance due 
to random noise of the measured outputs  γi = 1/σi

2. In 
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that way, the subtotals Ji  of the objective function 
corresponding to each output i have comparable 
values in the optimum, and therefore all the outputs 
are given the same relative importance in the fit. 

According to a formulation (8) equivalent to (5): 
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where Q is a diagonal matrix of the aforementioned 
weights. When the errors in the outputs are not 
random but correlated, the weight matrix should be 
equal to the inverse of the variance-covariance matrix 
of the measured outputs. 

Measurement noise and variability due to 
random disturbances can be characterized from data 
of the process outputs belonging to an experiment 
with the manipulated variables at constant value. The 
variance due to random causes of process output i is 
estimated according to (9), where iy  is the mean 
value of the output  i:  

 

        σi 2 = 
1

1
−N ∑

=

−
N

t
ii yy

1

2)(  (9) 

 
Finally, the Fisher Information Matrix (FIM) 

will be introduced as it will be used later. The FIM is 
a way of measuring the sensibilities of the model 
outputs with respect to the parameter vector, and is 
defined according to (10): 
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Although it was not considered in this work, 

the optimal design of experiments is based on the 
FIM matrix, since maximizing the FIM –or an 
associated norm or function– implies maximizing the 
amount of information obtained from the real system. 

 
2.2 EXPERIMENTAL CAMPAIGN 
In the gathering of experimental data of the 

real process, two sets of data are needed at least, one 
for the calibration and one for the validation of the 
model.  

Certain considerations must be taken into 
account in the experiment design stage: choice of a 
suitable sampling period; appropriate amplitude and 
frequency of the inputs so as to excite all the 
fundamental dynamics of the system under study; 
inputs non correlated were specified; and operating 
conditions in the range of interest. In Figures 2 and 3 
an example of a sequence of inputs applied to the 
process is shown. 

 

Fig. 2. Sequence in manipulated variable 1 
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2.3 SENSIBILITY ANALYSIS 
Two different sensibilities were studied –

relatives, so as to be able to compare–, both 
depending on the sequence of manipulated variables 
applied u(t) (that is, on the experiment) and on the 
point θ considered in the parametric space: 

a) Sensibilities of the objective function to be 
minimize with respect to the parameter j. The 
calculation will be usually made by finite differences 
according to (11): 
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although they can also be obtained analytically by 
numeric integration according to (12): 
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where the partial differentials of the model responses 
with respect to each parameter ∂ŷi/∂θj can be obtained 
by differentiation with respect to θ of the equations of 
the model (6), and taking into account that  ∂u/∂θ = 0  
it results (13): 
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being ∂x/∂θ  the unknown variables. Integrating this 
system of differential equations (13) jointly with the 
equations of the model (6), it is possible to obtain the 
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evolution through time of  ∂ /∂θ, and therefore the 
sensibilities ∂J/∂θj  according to (12). 

ŷ

b) Sensibilities of the responses of the model 
(outputs) with respect to the parameters according to 
(14): 
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In order to obtain a quantitative measure of the 

influence of each single parameter j on an output i, 
the following quadratic mean δ i,j

msqr integrated 
through time (15) is used: 
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In Figures 4 and 5 the two outputs of the tank 

model are shown respectively for changes in a single 
parameter according to the experiment of Figures 2 
and 3, so that a first graphical idea of the sensibility 
can be got.  

In Table 1 the numeric values of the 
sensibilities of the two outputs and the objective 
function J with respect to the 4 unknown parameters 
of the tank model are shown as example. 

 

 
Fig. 4: Sensibility of output 1 vs. θ1 

 

 
Fig. 5: Sensibility of output 2 vs. θ1 

 
Table 1  

Sensibilities with respect to the 4 parameters  
to estimate in the tank model 

 
Parameter δ 1, j δ 2 , j ∂ J/∂θ j 

θ1  
θ2  
θ3            
θ4 

1.54 
0 

0.06 
0 

0.04 
0.04 
0.02 
0.17 

344 
-7.3 
-1.1 
-34 

In the analysis carried out [5] it was checked 
that both sensibilities lead in general to the same 
conclusions, although with small nuances related to 
the respective definitions. Sensibilities of the outputs 
δi,j

msqr  hardly vary from θ inicial to θ*, but do not take 
into account the factors γi  that weight the different 
outputs and that are in fact included in the objective 
function to minimize. Sensibilities of the objective 
function with respect to each parameter ∂J/∂θj do 
consider the factors γi  that weight the different 
outputs i, however they have the disadvantage of 
depending too much on the relative position between 
experimental data and the simulated model for a 
given θ, and as a result they can lead to mistake when 
an output fits experimental data much better than 
other outputs for a given θ. 

 
2.4 IDENTIFIABILITY ANALYSIS 
The order of importance of the parameters 

obtained from the sensibility analysis gives idea of 
the effect of each parameter –considered alone– on 
the outputs. Nevertheless, it is also necessary to study 
the influence of all the parameters together, as it may 
happen that the effect on an output caused by a 
change in one parameter is cancelled by another 
simultaneous change in another parameter. It is then 
said that there is a certain degree of colinearity in the 
sensibilities of the outputs with respect to the 
parameters, which introduces a difficulty in the 
identification or estimation of the parameter set. 
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Identifiability is a structural, inherent property 
that depends on the way the parameters appear in the 
model, but also on the available measures. The later 
point can be improved with good experiment design; 
however, in other cases, nothing can be done. In any 
case, it is well known that colinearity does not affect 
negatively the model predictions; but colinearity will 
determine the accuracy of the parameter estimates 
obtained. 

Two methods were analysed in order to 
evaluate the identifiability of parameter sets: 

a) Brun et al. (2002) method. It is based on the 
linear dependence of subsets of columns of the 
sensibility matrix S built from the δi,j

msqr. Brun 
defines the colinearity index (16): 
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where KS~  is a submatrix kn ×  of S~  that contains 
the columns corresponding to the parameters of the 
subset K, being n the number of measured outputs 
and k the number of parameters of the subset K; S~  is 
the sensibility matrix re-scaled or normalized, whose 
columns are calculated according to (17), and where 
⎥⎪δj⎥⎪ is the 2-norm of vector δj, and λK is the 
smallest eigenvalue of K

T
K SS ~~ . 
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b) The Fisher Information Matrix (FIM) 

method. As a measure of the identifiability of the 
parameters of a model for a given experiment the 
method uses the condition number for the FIM 
matrix. This index points out singularity of a matrix, 
that is, if it is close to a non-invertible matrix. It is 
calculated as the quotient between the highest and the 
smallest eigenvalues of the matrix. 

High values of the Brun or Fisher indices 
point out that the corresponding matrix is nearly 
singular, and as a consequence the parameter subset 
θ  does not present good identifiability properties. 
The minimum value of the index is 1 in both 
methods. Table 2 shows the results for some 
significant subsets of parameters for the tank model.  

It was checked [5] that both methods, in spite 
of providing similar information, may complement 
each other in some particular cases. Brun method 
may lead to colinearity indices abnormally high of 
two parameters –although the parameters present 
good identifiability properties according to the 
model– if both parameters influence the outputs in a 
similar way (θ2 θ4). On the contrary, Fisher method 
has the advantage that it enables to evaluate more 
accurately the identifiability according to the model 
and the experiment considered; however, it may lead 
to colinearity indices abnormally high of two 
parameters when the relative sensibilities of the 
parameters (θ1 θ2) differ by orders of magnitude, 
because in this case the FIM matrix is ill-conditioned. 
That is the reason why both methods can complement 
each other. 

 
Table 2.  

Identifiability, tank model 
 

Parameter subset Brun Fisher 

θ1  θ2  θ3  θ4 

θ1  θ2 
θ1  θ3 

θ1  θ4 

θ2  θ4 

∞ 
1.01 
5.4 

1.01 
32000 

1240 
384 
434 
21 
59 

 
Finally, it was analysed [5] how dimensionless 

standard deviations σ j calculated from the FIM 
matrix can alternatively be used to classify 
parameters in order to select one or more subsets of 
parameters to estimate, as relative estimation errors 
(dimensionless standard deviations used in the 
calculation of confidence intervals) roughly predicted 
from the FIM matrix for the parameters estimated 
depend both on the single sensibilities and on the 
identifiability of the whole subset of parameters. 

 
2.5 ESTIMATION BY OPTIMIZATION 
As outlined in point 2, only parameters with 

high or considerable sensibilities will be estimated, 
and never those ones with negligible ones. With 

regard to identifiability, it is of interest that the subset 
of parameters to estimate has low colinearity. If 
colinearity is high, there will be lot of combinations 
of values θ* leading to roughly the same J. 
Nevertheless, a decision can be made to estimate a 
parameter subset with high colinearity, because 
usually the estimation of a higher number of 
parameters improves the fitting to experimental data. 
However, if the number of parameters to estimate is 
considerable, it would be natural to select a subset 
with good identifiability in order to reduce the 
number of parameters to estimate and in this way 
make easier the task of the optimization algorithm.  

After having selected one or several subsets of 
parameters, the estimation is carried out by dynamic 
optimization of a multiobjective function formulated 
according to a weighted least squares criterion. 
Experimental data were not filtered since random 
noise does not influence negatively the optimization 
and in non-linear models it is not proved that this 
leads to better estimates. 

 
Table 3  

Parameter estimates and confidence intervals, when 4 
and 2 param. were estimated 

 
Param. θ inicial θ*

4 param θ*
2  param 

θ1 
 

θ2 
 

θ3 

 
θ4 

0.72 
 

34 
 

0.47 
 

7.0 

(0.6195 ± 
0.0004) 

(52.4 ± 1.2) 
 

(0.465 ± 
0.007) 

(9.69 ± 0.11) 

(0.6195 ± 
0.0005) 

 
 
 
 

(11.08 ± 
0.09) 
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Fig. 6. Measured output 1 
 

 
Fig.7. Measured output 2 
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Parameter e  and with 
sions) obtained when 4 and 2 parameters were 

estimated for the tank model are shown in Table 3. 
Figures 6 and 7 represent the difference between 
model fit to experimental data before and after the 
parameter estimation, when subsets of 4 and 2 (θ1 θ4) 
parameters were selected. 
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ENVIRONMENT 
 
The modelling and simulation environment 

EcosimPro®, provides an object-oriented non-
causal approach and is based on powerful symbolic 
and numerical methods capable of processing 
complex systems of differential-algebraic equations 
and discrete events. 

As solver for optimization problems 
ated in the EcosimPro® environment, a general 

purpose non linear (NLP) optimization tool was used: 
a NAG® algorithm based on a sequential quadratic 
programming SQP method for minimizing. The joint 
performance of the solver and EcosimPro® was 
analysed. 

The
deterministic. It is fast compared to an heuristic 
algorithm; however, it does not ensure that the 
optimum attained is the global and not a local one. 
Other considerations to be taken into account when 
optimizing are the scaling of the decision variables to 
the same order of magnitude, the need to fix lower 
and upper bounds for the decision variables and the 
importance of the initial value given to them. 

 
3
The convenience of supplying the analytical 

nts of the objective function with respect to the 
decision variables (∂J/∂θj) to the optimization 
algorithm was analyzed in order to evaluate the 
performance of the solver. These gradients are 
obtained by numerical integration in EcosimPro® 
according to (12). 

Supplying the analytical gradients to the 
zation algorithm is of interest because one of 

the more critical points in the optimum search refers 
to gradients computation. And it is common in 
optimization problems where the objective function 
to minimize is obtained after running a simulation 
that nearly 90% of the computing time is devoted to 
model simulation (either to get the objective function 
value or its gradients with respect to the decision 
variables), especially when the model is complex; 
therefore it is important to try to increase the 
optimum search efficiency. It will be compared to the 
usual alternative when it is the optimization routine 
who calculates these gradients by difference quotient 
by means of objective function evaluations. 

The results for different initial condi
parameter bounds were assessed, according to 
robustness (final value of  J*), number of iterations of 
the algorithm and total computing time. On the other 
hand, it is well known that simulation environment 

precision has to be greater than that of the solver so 
that the optimization algorithm produces reliable 
results when it is necessary to integrate and resolve a 
system of differential-algebraic equations in order to 
obtain the objective function. A difference of two 
orders of magnitude is usually enough. Different tests 
were also carried out varying computing precisions of 
the NAG® routine and EcosimPro®. 

The conclusion attained is th
when the analytical gradients numerically 

integrated in EcosimPro® are given to the 
optimization routine is never better (neither in value 
nor in computing time) than the optimum found when 
it is the routine who evaluates these gradients by 
difference quotient. So it seems that analytical 
gradients are expensive to compute and do not lead to 
increased accuracy as could be expected. So it would 
be more efficient that the NAG® routine evaluates the 
objective function gradients with respect to the 
decision variables by difference quotient, disturbing 
in a proper extent the decision variables so that the 
differentials are accurate enough. 

 
 
4
 
A
tion, the resulting model must be validated. 
 

 
Fig. 8. Validation, output 1 
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Fig. 9. Validation, output 2 
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V ables to evalu
ility according to the specific purpose for 

which it was formulated. Model reliability is 
achieved by positive results in a set of tests. Bad 
results in validation should lead either to another 
experimental campaign –with other experimental 
data– or to change the model hypothesis. Different 
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validation techniques can be used, from graphical 
comparison with experimental data to statistical tests 
on the residuals (the difference between the model 
prediction and the real experimental data). Residuals 
must be non correlated with the inputs to the process, 
and should not show noticeable tendencies, that is, 
should be randomly distributed. If the errors come 
within acceptable limits, then the model may be 
deemed capable of explaining the recorded transients. 

For a different experiment to the one used in 
parameter estimation, the model obtained leads to the 
predic
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