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ABSTRACT

This paper is devoted to one of the most important practical case in image proc-

essing application - recognition / identification of the images which, having partly

known structure, have unknown, changing in time spatial position. In this case identifi-

cation process can be separated in two parts being carried out in succession: detection

(recognition) and tracing. Mathematical formalization of the task using specific matri-

ces and vectors is suggested and some possible solutions of the problem are discussed.

INTRODUCTION

The problem to be examined can be described for instance as follows: There is a

moving endless tape with a periodically repeated drawing, which can have determined

or random structure with some unknown a priori defects. The surface of the tape is ob-

served by line TV cameras or photoelectric cells, arranged across the tape. Velocity

and position of the tape may be changed accidentally. TV camera has a fixed position

and is connected to a computer.

Also there is an image obtained in advance which represents the repeating draw-

ing (one complete period) of the desirable quality and is inputted into computer. This

image is referred to as referring image (RI). The problem consists of three tasks [1]:

1. To determine whether the outputs of  row  TV camera or line photoelectric

cells belongs to the RI (identification process)?

2. To determine its position in the RI.

3. To begin and to hold tracing the drawing on the moving tape.

Each task of the problem can be applied to corresponding particular section of

Statistical Theory.

The first task can be solved by using the Detection Theory, based on the  Statisti-

cal Hypotheses Testing Theory, the second and the third tasks are the subjects of the



Parameter Estimation Theory and Filtering Theory, respectively. Notation and geome-

try representation is shown on fig. 1.

Figure 1. Geometry representation of identification object.

SECTION I.  MOVING WITHOUT ROTATION

1. FORMALIZATION OF THE PROBLEM

1.1. REFERENCE ARRAY

Let us suppose that any image is represented by (Nz x Mz) array Z0 ∈∈ R+, where

R+ is the subset of the all real positive numbers (including 0), R+ ⊕⊕ R_= R. This array

corresponds to the image of the desirable quality.

It is used for forming the reference (N x M) - array Y0, N < Nz, M < Mz. This

forming can be done by using special selecting (N x Nz) - matrix Vn, which realises

selection of the elements {Y0}nm in succession along axis X (with n = variable), and

(M x Mz) - matrix Vm for the elements in succession along axis Y (with m = variable).



So,

Y0= Vn Z0 Vm
T,

where

n =  j, ... , j + N,           j = 1, ... , Nz - N,

m = i, ... , i + Ì,                i = l, ... , Mz - Ì .

In reality array Z0 = Z00 + N0, where Z00 represents noiseless image, and N0  -

additive noise, but in this work we will use for computer modeling just Z0 as reference

array.

Components of the matrices Vn and Vm can be exposed to determined and random

shifts represented by the shift matrices Cx
q and Cy

k which dimensions are (Nz x Nz) and

(Mz x Mz) respectively; q = qd + qr, k = kd + kr, where qd and kd are the determined

positive integer variables; qr and kr are the random (positive or negative) integer vari-

ables. These integer variables should satisfy the following conditions:

0 ≤ q ≤ (Nz - N - 1),

0 ≤ k ≤ (Mz - M - 1).

So that:

Y0 = Vn Cx
q Z0 Cy

-kVm
T. (1)

The structures of the matrices V and C can be as follows:

Vn = Vx Cx
n,

where Vx = [IN : ON, Nz - N]   - the selecting matrix as n = l (see fig. 2);

IN - the identity (N x N) - matrix;

ON, Nz - N - the zero-component (N x (Nz - N)) - matrix.
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Figure 2. View of (5 x 8) - matrix Vx .



Ñx = [iNz, i1, ... , iNz - 1],          ( 2)

where iNj - (Nz x 1) - vector, having 1 at the j-th position and 0 at the others.
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Figure 3. View of (5 x 5) - matrix Ñx.

Matrices Vm and Cm have the similar structures:

Vm= Vy Cy
m,

Vy= [IM : OM, Mz - M],

Ñy = [iMz, i1, ... , iMz - 1].

Thus

Y0= Vx Cx
q + n Z0 Cy

- (k + m)Vy
T.
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Figure 4. View of (4 x 5) - matrix Y0 .



For simplicity we shall consider later that n and m are included in qd and kd re-

spectively.

It is useful to notice that VVT = I and CT = C-1, where CT is the transpose of C,

i.e. C the is an orthogonal matrix.

1.2. SAMPLE ARRAY

The random sample array to be identified can be represented as

Z = (Z0 + Zd)A + N, (3)

where A = diag [a1, ... , aMz] - matrix of a random variables, ai ∈∈ R+,  Zd ∈∈ R -

(Nz x Mz) - matrix of (random) errors, N - a sample noise matrix.

Analogously (1) for the testing sample array we can write:

Y= Vx Cx
s Z Cy

- t Vy
T,

where s = sd + sr, t = td + tr; sd and td are the determined positive integer vari-

ables (including n and m), sr and tr - random integer variables (positive or negative),

0 ≤ s ≤ (Nz - N - 1),

0 ≤  t ≤ (Mz - M - 1).

Each time for the identification we have only the column vector yj ∈∈ Y:

yj = Y iMj = Vx Cx
s Z Cy

- t iMj , (4)

where (M x l) - vector yj and (Mz x l) - vector iMj are analogous to vectors, used

in (2). So far as Cy
- t iMj = Cy

- t - j + 1 iM1 (see fig. 5) we can write

yj = Y iMj = Vx Cx
s Z Cy

- t1iM1 , (5)

where tl = t + j - l, (Mz x l) - vector iM1 has 1 at the first position and 0 at the others.

Figure 5.  Property of the matrixes multiplication Cy
- t iMj .



Identification must be carried out by comparing the components of the vector (5)

with the components of the matrix (1). For more detailed analysis let us represent

(N x l) - vector y0i ∈∈ Y0 analogously (5):

y0i = Y0 iMi = Vx Cx
q Z Cy

-k1iM1  , (6)

 where kl = k + i - l .

 2. IDENTIFICATION OF THE SAMPLE VECTORS

2.1. MATHEMATICAL APPROACH

In general to solve the problem is to test two statistical hypotheses: "zero'

hypothesis

H0: yj ∈ Y0 as j = l, ..., Ì, (7)

against alternative hypothesis

H1: yj ∉ Y0 as j = l, ..., M. (8)

This case is the case of composite hypotheses testing (because some unknown

parameters are presented). We can consider the case as multialternative testing - in this

case - verification of (M + l) hypotheses:

"zero" hypothesis

H0: y = N, (7)

 against M alternative hypotheses

Hi: y = y0i + Ni as i = l, ..., M. (8)

Hypothesis H0 means that no image is in the TV camera output signal. This case

is out of any practical interest. In fact we deal with the problem of distinguishing of M

non orthogonal vector signals. This problem is rather complicated and by now has no

complete theoretical solution in general. But in many applications we deal with the

similar tasks, therefore some theoretical (for particular cases) and heuristic results are

known.

The multialternative testing approach is very close to the estimation theory.

Therefore solving the distinguishing problem we simultaneously can obtain a result for

the estimation part of it. It is clear that the result depends on the choice of a criterion.



As we can combine detection and estimation tasks it is convenient to choose Maxi-

mum Likelihood ratio Method.

In accordance with this method we have to choose the maximum value of Likeli-

hood ration obtained for the all  comparing vectors:

ΛΛ i (y) → max    as   i = l,..., M,

 or

ln ΛΛ i (y) → max  as   i = l, ..., M,

where the Likelihood ratio is

ΛΛ i (y)=[sup Ly (i)] / [sup Ly (0)].

Ly (0) and Ly (i) - likelihoods, corresponding to "zero" hypothesis and M alterna-

tive hypotheses, respectively.

The value of the variable i, corresponding to Likelihood ratio maximum, gives the

evaluation of the image vector (which at the moment has been received from line TV

camera) number.

When  array  dimension  M  is  too  large  for  real  time processing, it is possible

to restrict the maximization range assuming i = M1, ..., M2, where [M1, M2] ∈∈ [1, Ì],

forming in such a way a "recognition window". This window can be immovable since

sample vector is "moving" (changing in accordance with a tape movement).

To use the optimal (in sense of Maximum Likelihood ratio) rule of decision it is

necessary to know statistical characteristics of the random variables. As was noted

above the structure of an image can be both determined and random one. Theoretically

it is possible to calculate all the characteristics of the reference image and in such a

way to determine reference array Z0, especially for determined (geometrical)  drawing

[2]. But such a work is rather complicated and needs a very high level accuracy of the

joint positioning of the tape and TV camera. Practically reference array Z0, can be ob-

tained by averaging (or selecting) some arrays corresponding to the images of the de-

sirable quality.



It is useful to note that in the discussing problem we deal with a multidimensional

cyclostationary process which distribution depends on the group of random parameters

with specified distributions.

2.2. HEURESTIC APPROACH

If statistical characteristics of the random variables (ài, qr, kr, sr, tr) are unknown

and the sample size is not enough to estimate them with required accuracy (in the

cases of parametric or nonparametric a priori uncertainties) it is impossible to use any

constructive mathematical methods to obtain the solution of the problem.

To solve the problem at this rate it is possible to apply a  heuristic  approach.

Below  some  possible  criteria  are discussed in brief.

On figures 6 and 7  you can see of view reference matrix for computer modeling.
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Figure 6. View the example of reference array with equal randomize of numbers

(root mean square this reference array is 5.8).



Figure 7. View the example of reference array with equal randomize of numbers

as grayscale image.

2.3. SOME CRITERIA DISCUSSION

Let's look at the problem from point of view of definition of distance between

vectors with use of the following criteria.

1. Minimum norm (or square norm) of the difference vector. This criterion can be

written as

  yj - y0i→ min   as i = j,

or

yj - y0i2 → min  as i = j.                                (9)

Both forms of the criterion are equal but for discussion it is more convenient to

use the second one.

For (9) we can write:

yj - y0i2  = yj2 +y0i2 - 2yj
Ty0i .                         (10)

Using (5) and (6), obtain

yj2 = (Vx Cx
s Z Cy

- t1iM1)T (Vx Cx
s Z Cy

- t1iM1) =

= Sp (y(s + 1), (t1 + 1) y(s + 1), (t1 + 1)
T) = y(s + 1), (t1 + 1)2 ,    (11)

Zo

20 40 60 80

10

20

30

  

  



where Sp(.) denotes trap of a matrix, y(s + 1), (t1 + 1) - (N x l) - vector, the number of

the first component of which (inside array Z) is (s + l), (tl + l).

Analogously

y0i2  =  y0(q + 1), (k1 + 1)2 , (12)

and

yj
Ty0i = y(s + 1), (t1 + 1)

T
 y0(q + 1), (k1 + 1) . (13)

Since

y0i = z00(q + 1), (k1 + 1) + n0(q + 1), (k1 + 1) ,

yj = (z00(s + 1), (t1 + 1) + zd(s + 1), (t1 + 1)) a(t1 + 1) + n(s + 1), (t1 + 1) .

we can write:

y0i2  =  z00(q + 1), (k1 + 1)2 + n0(q + 1), (k1 + 1)2 +

+ 2 z00(q + 1), (k1 + 1)
T n0(q + 1), (k1 + 1) .  (14a)

yj2  = z00(s + 1), (t1 + 1) + zd(s + 1), (t1 + 1)2 a(t1 + 1)
2 + n(s + 1), (t1 + 1)2 +

+ 2 a(t1 + 1)(z00(s + 1), (t1 + 1) + zd(s + 1), (t1 + 1))T n(s + 1), (t1 + 1)   =

= (z00(s + 1), (t1 + 1)2 + zd(s + 1), (t1 + 1)2 +

+2 z00(s + 1), (t1 + 1)
T zd(s + 1), (t1 + 1)) a(t1 + 1)

2 + n(s + 1), (t1 + 1)2 +

2 a(t1 + 1)(z00(s + 1), (t1 + 1) + zd(s + 1), (t1 + 1))T n(s + 1), (t1 + 1) ,         (14b)

yj
Ty0i = a(t1 + 1) (z00(s + 1), (t1 + 1) + zd(s + 1), (t1 + 1))T z00(q + 1), (k1 + 1)+

+ a(t1 + 1)(z00(s + 1), (t1 + 1) + zd(s + 1), (t1 + 1)) T n0(q + 1), (k1 + 1) +

+ n(s + 1), (t1 + 1)
T z00(q + 1), (k1 + 1) + n(s + 1), (t1 + 1)

T n0(q + 1), (k1 + 1) .       (14c)

Neglecting influences of the noises, we obtain

y0i2  =  z00(q + 1), (k1 + 1)2 ,                             (15a)

yj2  = z00(s + 1), (t1 + 1)2 + zd(s + 1), (t1 + 1)2 +

+  2 z00(s + 1), (t1 + 1)
T zd(s + 1), (t1 + 1) ,                        (15b)



yj
Ty0i = a(t1 + 1)(z00(s + 1), (t1 + 1) + zd(s + 1), (t1 + 1))T z00(q + 1), (k1 + 1)  .         (15c)

Evidently, that in the case zd(s + 1), (t1 + 1) = 0 expressions (15b) and (15c) can be

written as

yj2  = z00(s + 1), (t1 + 1)2 ,

yj
Ty0i = a(t1 + 1) z00(s + 1), (t1 + 1)

T z00(q + 1), (k1 + 1) .

Criterion (9) will take on its minimum value (zero, in the last case) if s = q,

tl = kl. Influences of noises and errors (matrix Zd) change the minimum value, moreo-

ver the quality function corresponding to criterion (9) becomes not uniminimum one

(global minimum determination will not be discussed in this paper).

We can write down statistical average of the matrices product to find out on that

variables and how does the criterion depend:

E [Z0
TZ0] = E [ (Z00 + N0)T (Z00 + N0) ] = BZ00 +  BN0  ,              (16)

E [ZTZ] = E [ ( (Z00 + Zd)A + N)T ( (Z00 + Zd)A + N)] =

= E [ATZ00
T Z00A] + E [ATZd

T ZdA] + BN  ,                           (17)

E [ZTZ0] = E [ ((Z00 + Zd)A + N)T (Z00 + N0)] = E [ATZ00
T Z00] ,  (18)

where BZ00 , BN0 and BN are (Mz x Mz) - matrices of the second-order moments

of corresponding random variables. It has been taken into account that different types

of the variables are jointly independent.

In all criteria we used the random values with normal distribution for modeling

sample noise matrix N. The mean of this random value was equal to zero.

In the figures enclosed you can see results of computer modeling.

Figure 8 shows the development of magnitudesyj - y0i, which were averaged

by 120 realizations (the X - axes represents the number of a vector from the reference

array, which was sequentially compared with all vectors of the sample matrix, on Y -

axes - the number of a vector from the sample array). Figure 9 represents values of

the diagonal elements of matrix Numb1_1 (see fig. 8).



The figure shows that results of modeling, which obtained by one vector from the ar-

ray Z0 , will not essentially change if we take any other vector from Z0 as reference

(only for the type of image we consider). For the computing we chose the vector y0 40.

On the figure 10 the dependence of yj - y0ion root mean square deviation of

additive noise (Nsigm1 was averaged by 120 realizations) is shown. The figures 11,

12 and 13 we can see the sections Stat1_1 and Stat1_2 of the figure Nsigm1, given

the root mean square value of noise 3.0 and 15.0 respectively.  On the figures 11 and

12 the dot line shows the examples Samp1_1 and Samp1_2 of the realization yj -

y0i,  according to which Stat1_1 and Stat1_2 were calculated. All figures are given

in a scale of values Z0 .
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Figure 11.
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Figure 13.

 

2.  Minimum sum of deviation.

yj - y0iTeM
 → min   as i = j ,

where eM - (M x l) - vector all the components of which are equal 1 (summation

vector); . - denotes a vector of the absolute values of subtraction of the corre-

sponding components of the vectors.

In the figures enclosed you can see results of computer modeling.

Figure 14 shows the development of magnitudesyj - y0iTeM, which were aver-

aged by 120 realizations (the X - axes represents the number of a vector from the ref-

erence array, which was sequentially compared with all vectors of the sample matrix,

on Y -  axes - the number of a vector from the sample array). Figure 15 represents val-

ues of the diagonal elements of matrix Numb2_1 (see fig. 14). The figure shows that

results of modeling, which obtained by one vector from the array Z0 , will not essen-
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tially change if we take any other vector from Z0 as reference (only for the type of im-

age we consider). For the computing we chose the vector y0 40.

On the figure 16 the dependence of yj - y0iTeM on root mean square deviation

of additive noise (Nsigm2 was averaged by 120 realizations) is shown. The figures 17,

18 and 19 we can see the sections Stat2_1 and Stat2_2 of the figure Nsigm2, given the

root mean square value of noise 3.0 and 15.0 respectively.  On the figures 17 and 18

the dot line shows the examples Samp2_1 and Samp2_2 of the realization yj -

y0iTeM, according to which Stat2_1 and Stat2_2 were calculated. All figures are

given in a scale of values Z0 .
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Numb2_1

0 20 40 60

0
20

40
60

10

12

14

16

 



Figure 15.
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Figure 17.
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3.  Minimum angle deviation.

cos (Lij) → max  as i = j ,

where Lij - an angle between vectors yj  and y0i,

cos (Lij) = yj
Ty0i / sqrt (yj

Tyj y0i
Ty0i) ;

or

(1 - cos (Lij)) → min   as i = j ,  as Lij < 90°.

In the figures enclosed you can see results of computer modeling.

Figure 20 shows the development of magnitudes (1 - cos (Lij)), which were av-

eraged by 120 realizations (the X - axes represents the number of a vector from the

reference array, which was sequentially compared with all vectors of the sample ma-

trix, on Y -  axes - the number of a vector from the sample array). Figure 21 represents

values of the diagonal elements of matrix Numb3_1 (see fig. 20). The figure shows

0 10 20 30 40 50 60 70 80
5

10

15

20

25

Stat2_1
Stat2_2

 

Figure 19.



that results of modeling, which obtained by one vector from the array Z0 , will not es-

sentially change if we take any other vector from Z0 as reference (only for the type of

image we consider). For the computing we chose the vector y0 40.

On the figure 22 the dependence of (1 - cos (Lij)) on root mean square deviation

of additive noise (Nsigm3 was averaged by 120 realizations) is shown. The figures 23,

24 and 25 we can see the sections Stat3_1 and Stat3_2 of the figure Nsigm3, given the

root mean square value of noise 3.0 and 15.0 respectively.  On the figures 23 and 24

the dot line shows the examples Samp3_1 and Samp3_2 of the realization (1 - cos

(Lij)), according to which Stat3_1 and Stat3_2 were calculated. All figures are given in

a scale of values Z0 .
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Figure 21.
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Figure 23.
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 Figure 25.

4.  The comparative analysis of the considered criteria.

For comparison of criteria effectiveness we  calculated values according to formulas

(19) and (20). The calculated values for three criteria are shown on figures 26 and 27.

Axes X show rations of root mean square deviation of the noise and reference arrays

and represents noise / signal ratio.
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where meanj - the average value, which is calculated according to formula:    
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RESULTS

1.  The developed mathematical model visually enables to describe possible (existing)

errors in systems, operating with dynamic images (without rotation).

2.  This mathematical model can be applied to the analysis of various algorithms for

processing two-dimensional arrays of data. For example, in radar-tracking  systems

or/and quality control systems.

3.  This mathematical model is not equally effective for one-dimensional and two-

dimensional arrays. In processing for one-dimensional arrays [3] it does not give

advantage in comparison with other methods of sample array distortions simulation.

4.  In this research we compared three criteria: minimum norm of difference vector;

minimum sum of deviation; minimum angle deviation.

5.  Standard deviation of vectors values, which corresponds to the distance between

vectors of reference and sample arrays, practically does not depend on the ratio of

root mean square deviations of noise array and reference array. It is true for all three

criteria.

6.  The minimum sum of deviation criterion has the best selective ability comparing to

minimum norm of difference vector and minimum angle of deviation criteria. It is

true for images with a casual picture character and if ratio of root mean square de-

viations N and Z0  is less than 1,25.

7.  Minimum sum of deviation criterion requires smaller number of calculator elemen-

tary operation, than two other criteria. Therefore, this criterion is more suitable for

computing systems making decisions in real time.
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