PERFORMANCE EVALUATION OF BLUETOOTH NETWORKS

BY MEANS OF PETRI NETS

Lo Bello L., Mirabella О.
Computer Engineering and Telecommunications Department
University of Catania
Viale A. Doria, 6 - 95125 Catania, Italy
llobello@diit.unict.it, omirabel@diit.unict.it
Abstract
This paper addresses a flexible and efficient approach for both modeling and performance evaluation of Bluetooth networks. The approach is based on an extension of GSPNs (Generalized Stochastic Petri Nets) which makes it possible to associate the firing of a transition with the execution of a user-defined function. This approach has several advantages. The first is the capability of expressing the temporal behavior of a Bluetooth network component in a concise way, so that it can be easily implemented in a Petri Net simulator. The second advantage is its modularity, which allows models of single components to be combined in order to build a model of the whole piconet or scatternet. The paper describes the approach and its exploitation in a Petri Net simulator. The resulting models are presented together with results obtained by simulation.

I. INTRODUCTION
Bluetooth technology [1] enables low-cost on-demand connectivity among portable devices, such as notebook computers, mobile phones, PDAs, digital cameras, etc. For short-range wireless ad hoc interconnection, Bluetooth technology is also appealing in the industrial environment, where a number of applications, such as autonomous guided vehicles, remote control and diagnostics, process supervision, etc. can benefit iron replacing traditional wired connections with wireless ones [2]. An example of this kind of application is machine health monitoring. In some control systems, wireless access to diagnostic information in the encoders of large machinery, for example paper machines, is under investigation [3]. Log files containing information about internal errors which have occurred and the variables relevant to the encoders are usually retrieved by connecting laptops to the encoders by wire. Using wireless technology, this information could be more easily obtained. If the encoder is equipped with a Bluetooth interface, instead of climbing onto large machinery to connect a laptop or PDA by wire, it would be possible to stand on the factory floor and retrieve these values by connecting a laptop or a PDA over a Bluetooth link.
Bluetooth-equipped devices can form networks where information may flow seamlessly between the applications hosted in the devices. These networks of personal devices are often referred to as Personal Area Networks (PANs). A PAN may have both is "own" devices and "guest" devices from other PANs. Bluetooth operates inherently in an ad-hoc manner, without relying on any infrastructure via an access point or base station. PANs are created without, or with a minimum of pre-configuration.
Two or more Bluetooth units sharing the same channel form a piconet. Within a piconet, one device plays the role of master, controlling the traffic on the piconet, and all the others operate as slaves. Up to seven slaves can be active and served by the master. Communication in a piconet is organized so that the master polls each slave according to a poling scheme. No direct slave-to-slave communication is possible. A slave is only allowed to transmit after having been polled by the master. Scheduling inside piconete is referred to as intra-piconet scheduling (IRPS). A commonly used solution is the Round-Robin algorithm, but different solutions have also been investigated [4]-[7] and evaluated via simulation ([8]-[10]).
In some application scenarios, piconets with overlapping coverage coexist and operate independently. In other scenarios, devices in different piconets may need to communicate with each other. To facilitate inter-piconet communication, Bluetooth defines a structure, called a scatternet, which is formed by interconnecting multiple piconets. The connections are realized by means of Bluetooth units (sometimes called bridges, gateways or switch nodes - in this paper, we will use the tern switch nodes) which are members of two or more piconets.
As the details of scatternet support for Bluetooth have not yet been specified, Bluetooth scatternets present a number of technical challenges from a networking perspective. An open issue to be dealt with is, for example, inter-piconet scheduling (IPS), which is needed when the switch nodes have to forward traffic between piconets. As these nodes must be capable of time-sharing their presence in each piconet they are members of an inter-piconet scheduling algorithm is necessary in addition to the intra-piconet one. In [11] an overall architecture for handling scheduling in a scatternet has been presented and a family of inter-piconet scheduling algorithms (for both masters and switch nodes) has been introduced.
In this paper we address a flexible and efficient approach for modeling and performance evaluation of Bluetooth networks. In particular, we deal with an extension of GSPNs (Generalized Stochastic Petri Nets) [12] which makes it possible to associate the execution of a procedure (i.e. a user-defined function) with the firing of a transition, whether immediate or timed This approach not only enables us to express the temporal behavior of a Bluetooth network component in a concise way, but it can also be easily implemented in a Petri Net simulator. This would be impossible to achieve using traditional Timed Petri Nets, due to the explosive complexity of the resulting model.
The models obtained here for master, slave and switch nodes can be combined very easily, and the resulting piconet/scatternet model is ready to be evaluated through simulation. The resulting Petri Net is thus a skeleton which encompasses the general features of the piconet/scatternet, while the procedures associated with some of the transitions encapsulate the various mechanisms which can be adopted, for scheduling purposes for example.
[image: image4.png]Following the approach proposed in the paper, it is thus possible to build PN models of piconets and scatternets which can be used to simulate different scheduling algorithms for the same network topology, in order to identify the most advantageous solution according to the type of application and its constraints in terms of throughput and end-to-end delay. Moreover, thanks to the versatile and modular nature of our approach, different solutions in various network interconnection structures can be evaluated without the need to re-define the models of the different network components. The modularity of the model also allows performance evaluation of different scatternet topologies starting from two piconets onwards.
The paper is organized as follows. Section 2 gives a general overview of the modeling technique addressed. Section 3 presents models of the single components in a piconet, while Section 4 addresses modeling a Slave-Master switch in a scatternet. Section 5 shows how, by following our approach, these models can easily be combined to model entire piconets and scatternets. Simulation results obtained by applying our approach to some case-study examples are also presented. Finally, Section 6 gives our conclusions.
II. SOME NOTES ABOUT OUR APPROACH
To model the Bluetooth units in a piconet/scatternet we used an extension of GSPNs (Generalized Stochastic Petri Nets) [12], which make it possible to define transitions with an instantaneous, deterministic or stochastic firing time. Petri nets are usually unsuitable for modeling complex systems, as the size of the corresponding model, in terms of the number of places and transitions, grows enormously, becoming difficult to handle. To overcome the problem, the following features were introduced, and were also implemented in our Petri Net simulator.
♦ The possibility of associating the firing of a transition with the execution of a user function performing the desired operations. In this way it is possible to transfer much of the complexity of the system being modeled from the structure of the Petri Net (PN) to specific software functions. The notation (#) is used for a transition with an associated user function, as is shown in Fig. 1. User functions can also be associated with stochastic and instantaneous transitions.
[image: image1.jpg]
transition tx with deterministic firing time associated with the execution of a user function
tx (#)
Fig. 1. Notation for a transition associated with the execution of a user function.
♦ A mechanism to associate each token of the Petri Net with a frame object featuring:
· a sender address,
· a destination address,
· a length (expressed in bytes).

When a PN transition fires, this mechanism also automatically moves the frame associated with the token from the input to the output place. In our PN model, places with frame buffering capabilities allowing them to contain not only tokens but also frames are distinguished from nodes without buffering capabilities using the notation in Fig. 2.
place which can contain only tokens
place which can contain both tokens and frames
Fig. 2. Notation for a place with or without buffering capabilities.
In this way the most complex aspects of the system, and thus those hardest to model, are confined within user functions. We developed a simulator implementing the above-mentioned features. In our simulator, any change in the mechanisms only entails changes in the user functions, thus remaining confined within the transitions without affecting the model. This allows us to model and simulate different strategies (e.g. scheduling algorithms) without significant overheads.
III. MODELING MASTER AND SLAVES
IN A PICONET
Communication in a piconet is organized so that the master polls each slave according to a polling scheme. No direct slave-to-slave communication is possible. A slave is only allowed to transmit after having been polled by the master.
Bluetooth uses a Frequency-Hopping (FH) scheme in the unlicensed Industrial Scientific-Medical (ISM) RF band at 2.4 GHz. The channel is divided into consecutive slots, each slot lasting 0.625 ms; a different hop channel is used for each slot, thus giving a nominal hop rate of 1600 hops/s. One packet can be transmitted per slot. Subsequent slots are alternately used for transmitting and receiving, which results in a TDD (Time Division Duplex) scheme. The slave will start its transmission in the slave-to-master timeslot immediately after it has received a packet from the master.
Bluetooth specifies two kinds of links, i.e. Synchronous Connection Oriented (SCO) links and Asynchronous Connection Less (ACL) ones. SCO links, typically used to support voice traffic, use pre-reserved slots. An SCO link can transport telephone-grade voice, and can be modeled as ON/OFF traffic, with an activity period (ton generally shorter than toff). Several SCO packet types (i.e. HV1, HV2 and HV3), providing different transmission quality, are defined. The reader can refer to [1] for more technical details.
Here we present models for both master and slaves in a piconet. We assume a piconet with two slaves, but the model can easily be extended to deal with more than two slaves.
A. Modelling a Slave node
Fig. 3. outlines the high-level model of a slave with both SCO and ACL traffic. The top blocks model ACL and SCO frame generation respectively, while the other two refer to frame transmission and frame reception.
In Fig. 4 the blocks are given in more detail, as follows. Frame generation: ACL frame generation is realized by transition t5, which inserts tokens in P7. This place has a multiplicity of n, representing the buffer capacity. That is, after generating n tokens, transition t5 is blocked. Firing of transition t6(#) determines the execution of its associated user function ACL011 (where 01 indicates the piconet 01 while 1 stands for slave 1), which generates and assigns the ACL frames a sender address, a destination address and a length in bits. The resulting frames are then buffered in P8. The firing of transition t7(#) determines the execution of the user function PNA011, which generates the Polling, Null and Ack frames for ACL traffic. On the other hand the firing of transition t3(#) is associated with the execution of a user function named SCOs1, which generates SCO frames (buffered in P5) and assigns them a sender address, a destination address and a length in bits. The firing of transition t2(#) is associated with the execution of a stop function which generates STOP frames for SCO traffic. Transition t2 is instantaneous, as a slave cannot start SCO traffic generation. On the other hand, a slave can quit SCO transmission (when the activity period ton expires).
[image: image2.jpg]
Fig. 3. High-level model of a slave featuring both SCO and ACL traffic in a piconet.
Frame Rx: the slave interface has to filter the frames received from the master, which are collected in P11. This filtering is performed by the function srx0l1, associated with transition t10(#). This function compares the address in the frame with the interface address and propagates the frame only if they match. Function srx011 has first to determine whether the received frame is SCO (in which case it places a token in P12) or ACL (token in P13). If the received frame is a SCO frame, the function has to check whether it is a SCO STOP frame sent by the master or not and act accordingly. In the first case, the function enforces the end of time tl; otherwise it places a token in P12 and empties place P4, thus starting the activity period ton for the slave. Finally, the function sefi, which executes following the firing of transition t4(#), checks the frame in P5 and if it is a SOD STOP frame sent by the slave, places one token in P4, another one in P1 and leaves P3 empty, in order to restore the initial conditions in the slave.

Frame Tx: transition t9 models the synchronization time. In the case the received frame transition t12 or t11 represents the maximum time needed to receive a frame while in connection state. The sum t9+tl2 (in the ACL case) or t9+t11 (in the SCO case) has to be equal to 0.625 ms, i.e. a slot time.
[image: image5.png][image: image3.jpg]
frame Rx frame Tx
Fig. 4. Model of a complete interface for a slave featuring both SCO and ACL traffic in a piconet.
B. Modeling a Master node
Fig. 5 gives a high-level scheme for a master node in a piconet, while Fig.6 shows the model of an ACL frame generator for a master. As compared with the top part of Fig. 4, we note that place P3 in Fig.6 (corresponding to P8 in Fig.4) has a multiplicity of q2, as here it represents a buffer (q2 is the buffer capacity) containing not only the frames generated by the master, but also frames received by the master which are not addressed to it. This is because there is no direct slave-to-slave communication in a piconet, and every data exchange is mediated by the master. For example, when slave 1 has to send a frame to slave 2, it sends the frames to the master, which inserts the frame in the buffer modeled by P3 after realizing that the real destination of the received frame is slave 2. This means that a Level 3 header has to be inserted in the payload of a Level 2 packet. Thus the master needs a buffer where the data sent from one slave to another can be temporarily stored. Deterministic firing of transition t5 (1.25 ms) accommodates the generation rate of PNA frames.

[image: image6.png]
Fig. 5. High-level scheme of a Master in a piconet.
Fig. 6. Model of an ACL frame generator for the master in a piconet.
[image: image7.png]
Fig. 7. SCO frame generator model for the master.
In Fig. 7 t1=ton, t2=toff, t3=time between consecutive frames (interframe time) during ton (i.e., 3.75 ms for HV3 packets, 2.5 ms for HV2 ones and 1.25 ms for HV1 packets). Place P6 blocks frame sending after the SCO STOP frame has been sent (it is the task of the user function associated with transition t2(#) to send the SCO stop frame), while transition t4(#) is associated with the function generating SCO frames.
[image: image8.png]
Fig. 8. Model of a master interface polling two slaves in a piconet.
Another important block in the model is the master interface in charge of polling the slaves, which is shown in Fig. 8. The initial marking in P4 makes the ACL generator for slave 1 transmit first. The deterministic firing time of transition t3 represents the time interval during which each slave is allowed to receive and transmit, indicated here as a Tx-Rx interval. In this case, as there are two slaves and we are considering one-slot packets, the minimum Tx-Rx time is 2 slots, i.e. 2*0.625 ms. Transition t4(#) is associated with a function called ss2 which performs intra-piconet scheduling. That is, it places a token in either P2 or P4 according to the scheduling algorithm adopted
IV. MODELLING A SLAVE-MASTER SWITCH IN A SCATTERNET
In thus section we show how to adapt the models described previously to take into account the specific features of switch nodes in a scatternet. As it is known, piconets in a scatternet are connected by means of Bluetooth units called switch nodes, which are members of two or more piconets. A switch node can simultaneously be a slave member of multiple piconets, but only a master in one. To distinguish between the two possible cases, here we will refer to a node as either a Slave/Slave switch or a Master/Slave switch. As switch nodes are equipped with a single Bluetooth transceiver, they are able to follow the hopping sequence of a single piconet at a time. For this reason, they can only be active in one piconet at a time, being in low power modes in the other piconets. As a result, we have to include the low power modes in our models. We also had to include the presence of the guard time, i.e. the time a switch node has to wait after a piconet switch in order to be able to participate in the piconet in which it is currently active. This delay is due to the fact that the master clocks of different piconets are not synchronized, so the slot boundaries of different piconets generally do not match.
[image: image9.png]
Fig. 9: Scheme of a Slave-Master switch in a scatternet

Below we give the model of a complete slave-master switch interface in a scatternet made up of two piconets. The model was developed under the following assumptions:
· all the non-switch nodes in each piconet are in the active state;

· only ACL traffic is present;

· each piconet has its own hopping sequence and slot boundaries in different piconets are independent;

· within the Slave-Master switch, the slave side has priority over the master side.
[image: image10.png]
Fig. 10. An intermediate model of a Slave-Master switch
[image: image11.png]
Fig. 11. A complete interface for a Slave-Master switch

This means that, given two piconets α and β, the IPS between piconets α and β depends on the IRPS scheduling of piconet α (that is, the time the switch node is active in piconet β depends on the IRPS in piconet α).
Fig. 9 gives a high-level scheme for a Slave-Master switch in a scatternet. The left-hand side of the figure refers to the Slave side, the right-hand one to the Master side. In order to simplify the representation, the Rx/Tx block on piconet α (where the unit is a slave) has been modeled separately from the Rx/Tx block on piconet β (where the unit is the master). In Fig. 10 each block in Fig.9 is described in more detail.
A. Description of the user functions relevant to the Slave-Master switch
On the left-hand side of Fig. 11 (Slave side), the user functions described below are present (Notation: αi indicates the i-th slave of piconet α):
· ACLαi: generates the address and length fields of ACL frames;
· [image: image12.png]PNAαi: generates Polling, Null and Ack fames for ACL traffic;
· srxαi: filters the fames received from the master of piconet α as follows:
1. if the destination address is inside piconet α, but it is not slave αi, places P30 and P34 are unmarked, thus the master side in piconet β is unblocked;

2. otherwise, places Р30 and P34 are marked, so the piconet β side is blocked, and place P7 is marked too, so the slave can reply to the master on piconet α. If the destination address of the received fame is not in piconet α (i.e. in the case of an inter-piconet fame) then the fame is inserted in one of the two buffers P11 or P16, according to thevalue of the destination field (slave 1 or slave 2 of piconet β), and isthus forwarded to piconet β.

On the right-hand side of Fig. 11 (Master side), the following user functions are present:
· AC1β0: generates ACL fames (buffered in P11);
· PN1β0: generates Polling, Null and Ack fames (buffered in P11) for ACL traffic;

· AC2β0: generates ACL fames (buffered in P16);

· PN2β0: generates Polling, Null and Ack fames (buffered in P16) for ACL traffic;

· ss2: performs scheduling, marking either place P20 or place P22 according to a given scheduling algorithm, in such a way as to inhibit
firing of either transition t18 or t19. Moreover, this function can change the timing of transition t20, which represents the Tx-Rx time;

· mrxβ0: filters the fames received from piconet β slaves as follows:

1. if the destination address is inside piconet β and is equal to its own address, then no action is performed Otherwise, it is a slave-to-slave intra-piconet fame, so the function inserts the frame into the relevant buffer (P11 or P16);
2. if the destination address is not in piconet β, the fame is an inter-piconet one, so the function inserts it in buffer P3.
V. PERFORMANCE EVALUATION
A. Simulating a piconet
In order to evaluate the performance of piconet networks, we developed a simulator allowing us to assemble the modules described in the previous Sections to obtain a model for the entire piconet On the basis of the GSPN extension we used, the simulator activates the various transitions and executes the associated procedures. The simulations described in this section were performed with the aim of both assessing the validity of the proposed models and evaluating network performance. Fig. 12 shows an example of how the single models given in Sect3 can be combined to obtain a piconet In this example, the piconet comprises a master and two slaves.
Fig. 12. Scheme of a piconet with two slaves.
This model was implemented in the simulator and evaluated. In order to investigate network behaviour under a heavy load, close to saturation, the maximum admissible workload was calculated As the data rate is 1 Mbps, and each slot lasts 0.625 ms, 1600 slots per second are available, one half of which are used by the Master, while the remaining half are distributed among the various slaves (an error-free channel was assumed, where no retransmissions are needed). Performance evaluation was thus performed under the following conditions:
· for SCO traffic (of the HV3 type only), the following values were chosen: ton=1s, toff=6s, generation time 3.75 ms, so this kind of traffic used 33% of the available bandwidth;
· for ACL traffic we considered a poll interval=40 slots, Tx-Rx time=40/2 = 20 slots. Two exponentially distributed stochastic generation times were used, called ACL1 and ACL2. The average values were 2.50 ms => 400 packet/s for ACL1 and 3.75 ms => 266 packets for ACL2 respectively. In order to achieve fair bandwidth sharing, a Round-Robin approach was chosen for polling ACL traffic.
Fig. 13 shows the trend of access delay versus time using ACL1. During the ton, period for SCO traffic, the access delay for ACL traffic grows in a linear way, while it remains quite constant during the toff. one. In the toff period there is no SCO traffic, but the Master has to use all the bandwidth to transmit ACL traffic (as ACL1 traffic consumes 100% of its available bandwidth). Thus, due to the backlog of ACL packets not transmitted from the ton period there is no way for the Master to empty the queues. That is, ACL1 traffic is transmitted, but the number of packets in the queues remains almost constant. From Fig. 14, on the other hand, it can be seen that in the second scenario (ACL2 generator) the access delay gradually reduces to modest values during the toff period. This is because the ACL2 generator does not consume all the bandwidth available for ACL traffic, so the queue length eventually decreases.
[image: image13.png]
[image: image14.png]
Fig. 13. Access delay (ACLl generator).
[image: image15.png]
Fig. 14. Access delay (ACL2 generator).
B. Simulating a scatternet
As an example of how the models given in the previous Sections can easily be combined to represent complex network topologies, Fig. 15 shows the case of a scatternet made up of two piconets interconnected through a Slave-Master switch. As can be noticed as compared to Fig. 12, a new block representing the Slave-Master Switch (described in Sect4) has been introduced For performance evaluation purposes, we assumed a scatternet made up of several piconets forming an "information pipeline", as shown in Fig. 16.
This structure may have several applications in the process control area, such as collecting data from a sensor array (where sensors are slave nodes in a row) or connecting devices located beyond the maximum distance allowed by the network to a data logger. Our performance metrics is the end-to-end delay of a packet sent from slave sl in piconet 1 to slave sl in piconet 3, measured as the time difference between the transmission of the last bit of the packet and its reception at the final destination. We considered the following scenario:
· piconet 1, comprising a master, a slave and a Slave-Master switch node. The traffic consists of both ACL and SCO packets (of the HV3 type). The SCO link involves the first slave only.;
· pieonet 2... (n-1), comprising a Slave-Master switch node playing the ole of master, a slave node and another Slave-Master switch. In these iconets only ACL traffic is present;
· piconet n, comprising a Slave-Master switch playing the role of master nd two slaves. Only ACL traffic is present.
Fig. 15. Scheme of a scatternet made up of two piconets connected by a Slave-Master switch.
[image: image16.png]
Fig. 16. The example considered as a case study.
As was discussed before, no standard solutions for inter-piconet scheduling exist yet, and a number of approaches are currently under investigation. As the aim of this paper is to address a modeling technique for Bluetooth networks and not to focus on a proposal for a new inter-piconet scheduling algorithm, for evaluation purposes we adopted a simplified version of the rendezvous point algorithms [11].
The approach used is based on static priority; that is, a preceding piconet has higher priority than the following ones. This means, for example, that if we consider the Slave-Master switch in piconet 1, the Master side will be active in piconet 2 only when the corresponding Slave side is not transmitting/receiving in piconet 1.
Fig. 17 shows the average end-to-end delay in the scatternet as a function of the load of the piconets forming it.
[image: image17.png]
Fig. 17. Effect on the average end-to-end delay of the load in the piconets forming a scatternet.
It can be noticed that the end-to-end delay obtained in our simulations grows with the number of piconets. This result is consistent with the topology and IPS strategy chosen. Moreover, when all the piconets composing the scatternet are heavily loaded, the end-to-end delay increases more significantly when the number of connected piconets is greater than three.
VI. CONCLUSIONS AND FURTHER WORK
This paper has proposed an approach consisting of a modeling technique which extends GSPNs and its exploitation in a PN simulator implementing additional features we have introduced. The versatility of the proposed approach makes it possible to define models for single Bluetooth units which can easily be assembled to represent several different network topologies. Thanks to the presence of functions associated with transitions, our technique allows us to embed different IPRS and IPS algorithms in our models. As further work we will use the technique and models given in this paper to compare the performance of some IPS algorithms recently proposed in the literature.
REFERENCES
[1] Bluetooth SIG, Specification of the Bluetooth System - Version LIB, Specification Vol. I & 2, February 2001, 2001.
[2] U. Bilstrup, P-A. Wiberg. "Wireless Technology in Industry-Applications and User Scenarios", in Proc ETFA2001, IEEE Conf. on Emerging Technologies and Factory Automation, pp. 123-133, October. 2001.
[3] Leine&Linde, Wireless health monitoring systems for encoders. http://www.leinelinde.se. July 2001.
[4] S. Garg, M. Kalia, R. Shorey, "MAC scheduling for power optimisation in Bluetooth: A master-driven TDD wireless system", in Proc. of VTC 2000, pp. 196-200, 2000.
[5] N. Johansson, "Perfoimance analysis of Bluetooth", Licentiate thesis at Department of communication systems, Lunds Institute of Technology, March, 2000.
[6] A. Capone, M. Gerla, R. Kapoor, "Efficient polling scheme for Bluetooth picocells", in Proc. of IEEE International Conference on Communication. Vol. 7. pp. 1990-1994.2001.
[7] M. Kalia, D. Bansal, R. Shorey, "DATA scheduling and SAR for Bluetooth MAC ", in Proc. of FTC 2000, pp. 716 - 720, 1999.
[8] R. Bruno, M. Conti, E. Gregori, "Wireless Access to Internet via Bluetooth: Performance Evaluation of the EDC Scheduling Algorithm", in Proc. of ACM WMI'01, July 2001.
[9] A. Das, A. Ghose, A. Razdan, H. Saran, R. Shorey, "Enhancing Performance of Asynchronous Data Traffic over the Bluetooth Wireless Ad-hoc Network", in Proc. of IEEE INFOCOM'O1. Apr. 2001.
[10] N. Johansson, U. Korner, P. Johansson. "Performance Evaluation of Scheduling Algorithms for Bluetooth", In Broadband Communications: Convergence of Network Technologies, Danny H. K. Tsang and Paul J. Kuhn Editors, Kluwer Academic Publishers, pp. 139-150. 2000.
[11] P. Johansson, M. Kazantzidis, R. Kapoor. M. Gerla. "Bluetooth: An Enabler for Personal Area Networking", IEEE Network, 15, pp. 28-37, Sep./Oct. 2001.
[12] M. Ajmone et al., "An introduction to GSPN", Int. J. Microelectronics and Reliability, 1991, pg. 699-725.
� EMBED Photoshop.Image.5 \s ���

� EMBED Photoshop.Image.5 \s ���

� EMBED Photoshop.Image.5 \s ���

� EMBED Photoshop.Image.5 \s ���

� EMBED Photoshop.Image.5 \s ���

� EMBED Photoshop.Image.5 \s ���

� EMBED Photoshop.Image.5 \s ���

� EMBED Photoshop.Image.5 \s ���

� EMBED Photoshop.Image.5 \s ���

� EMBED Photoshop.Image.5 \s ���

� EMBED Photoshop.Image.5 \s ���

� EMBED Photoshop.Image.5 \s ���

� EMBED Photoshop.Image.5 \s ���

� EMBED Photoshop.Image.5 \s ���

PAGE
7

[image: image18.png][image: image19.png][image: image20.png][image: image21.png][image: image22.png][image: image23.png][image: image24.png][image: image25.png][image: image26.png][image: image27.png][image: image28.png][image: image29.png][image: image30.png][image: image31.png]_1176051154.unknown

_1176117492.psd

_1176302912.unknown

_1176111253.psd

_1176111385.psd

_1176109888.unknown

_1175598717.psd

_1176050814.psd

_1176051051.psd

_1175601550.psd

_1175602343.psd

_1175586615.psd

_1175598680.unknown

_1175582762.psd

