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Abstract
The method of synthesis of discrete nonlinear multIchannel shaping applied for modeling of vector non-Gaussian processes with set frequency distribution and set correlation and spectral characteristics.

I. INTRODUCTION

The most comprehensible method, allowing to model casual non-Gaussian processes without a methodical mistake, is the method of nonlinear functional transformation of normal casual process is [8], [9].
The basic disadvantage of the method is great volume of the spadework connected to calculation of linear filters parameters, used up to the nonlinear functional converter [8]. Thus it is required to make of the decision in process of performance of numerical calculations for separate particular problems that make practically impossible automation of process of synthesis, algorithm of modeling [8], [10].
In this paper some new results on synthesis of nonlinear discrete filters of random order which allow to receive closed analytical expressions for calculation of coefficients of linear filters and thus to fully automate the most labour-intensive part of  technique of synthesis of nonlinear functional transformation method are offered. The submitted algorithms are steady, focused on statistical problems, its synthesis was carried out in view of the subsequent realization on the PC, it caused by its high efficiency in comparison with known algorithms [1] – [3], [8].
II. METHOD OF SYNTHESIS OF NONLINEAR MULTICHANNEL DISCRETE SHAPING FILTER OF RANDOM ORDER

In this work the method of synthesis of the nonlinear multichannel discrete shaping filters (NMDSF) in current use for modelling of non-Gaussian vector casual processes with set probabilistic characteristics is offered.

The number of NMDSF channels is equal to dimensionality of modeled casual vector process. On input of NMDSF gives the sequence of normal casual independent vectors with independent components. Each channel NMDFF contains linear discrete shaping filter (LDSF) after which it is made non inertial nonlinear transformation of output signal 
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The output signals of nonlinear converters are components of vector process and should have corresponding interchannel and time probabilistic characteristics.

The method of vector processes modeling with NMDSF using allows to divide a problem of synthesis into three particular  problems: synthesis of channel linear discrete shaping filter (LDSF), synthesis of the matrix interchannel shaping filter, synthesis of nonlinear noninertial  the functional converter characteristic 
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Channel LDSF provide reproduction of the set spectral-correlation characteristics of modeled process, the matrix interchannel filter forms the set mutual correlation-spectral characteristics between components of  vector, and the nonlinear converter is used for reception required marginal law of distribution of modeled process [9], [10].

Synthesized DSF contains variable in time coefficients, i.e. allows to model non-stationary casual processes, but only such non-stationary processes. In this non-stationary processes for Gauss channel processes the normalized correlation function depends on difference of the arguments, and average value and dispersion are any functions of time [4], [5], [7], [10].

For correlation function of similar non-stationary processes 
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where 
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Let’s determine normalized casual processes 
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then 
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Algorithms of modeling of vector Gauss process with casual correlation-spectral characteristics are in detail considered in the scientific literature [1], [2], [5] – [9]. 

At exact reproduction of correlation-spectral characteristics of modeled process, complexity of these algorithms grows according to increase in the next calculated value. However it is known, that for Markov’s processes modeling it is possible to use shaping filters with final number of coefficients, thus complexity of algorithm is defined only by order of Markov’s process [1], [2], [5], [9].

For approximations of correlation functions of information signals and interference used at designing of onboard control systems, in most cases researchers are confined  by Markov’s sequences not higher then the second order [1], [5], [7]. 

This restriction is caused not by aspiration to increase speed of modeling algorithm, but labor-intensive analytical methods of its synthesis. However, during theoretical researches, for example at modeling sea surface echo-signals it is necessary to apply Markov’s processes of the fourth order, and during research and modeling of electrocardiograms and encephalograms the order of usable Markov’s process can reach ten and even higher. Therefore the method of synthesis of channel LDSF of random N-order is considered. In the subsequent this method is generalized on synthesis of multichannel DSF, applied for vector processes modeling [1], [3] – [5], [7] – [9].

The method of synthesis of non-stationary nonlinear multichannel DSF (NMDSF) we will divide into two parts: synthesis of channel linear DSF (LDSF) for modeling of normal stationary process and synthesis of interchannel matrix filter providing set interchannel correlation dependence. As for the synthesis of characteristic of nonlinear functional converter 
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III. THE METHOD OF SYNTHESIS OF LINEAR DISCRETE SHAPING FILTERS OF RANDOM ORDER

Let’s consider discrete transfer function recursive DSF of N-order, and record it as [1], [6], [9]
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where 
[image: image22.wmf](

)

N

a

a

a

,

,

,

2

1

K

=

a

 and 
[image: image23.wmf](

)

N

b

b

b

,

,

,

2

1

K

=

b

 – vectors of DSF parameters, 
[image: image24.wmf]k

U

 – its output signal, and 
[image: image25.wmf]k

x

 – discrete normal white noise with zero average and dispersion equal 1, 
[image: image26.wmf](

)

1

,

0

~

N

k

x

, 
[image: image27.wmf]1

-

Z

 – one step delay (here and below there is no special symbol for 
[image: image28.wmf]Z

 process transformation). From here the output signal 
[image: image29.wmf]k

U

 is equal


[image: image30.wmf],

1

1

0

1

k

N

j

j

k

j

N

i

k

i

i

N

j

k

j

j

k

g

U

a

Z

b

U

Z

a

U

+

=

+

=

å

å

å

=

-

-

=

-

=

-

x


(4)

where 
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 – colored noise


[image: image32.wmf]å

-

=

-

=

1

1

N

i

i

k

i

k

b

g

x


(5)
There are many different ways of DSF synthesis on the set correlation-spectral characteristics of output signal. The basic of these methods is DSF synthesis on spectral density of output signal by factorization. However this method in practice can be applied successfully only for filters of the second order (theoretically for filters of 4-th order) because of the difficulties arising during factorization of spectral density as function of pseudo-frequency [1]. 
The methods of synthesis with required set correlation function in several points [2] are developed. However these methods, at first, brings to DSF of very high order, and  at second, do not guarantee behavior of correlation function of modeled process outside of set interval of its correlation function. Here is offered another method of DSF synthesis, inherently, being intermediate between statistical method [2], [3], [9] and the methods of synthesis following from the theory of automatic control [1], [8]. The offered method can be considered as updating of method of synthesis mentioned in [4], [6]. This updating allows, in contrast to the specified sources, to receive values of LDSF coefficients, realizing the general method autoregression of moving average.
Let latticed function of output signal LDSF equal 
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 corresponding to Markov’s processes of N-order. It signify that next in turn calculated value 
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 should depend only from N precious values, i.e. can be represented as (4), and algorithm by itself can be realized as LDSF with transfer function type of (3). It is not difficult to notice that average value 
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but 
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Further, from (3) follows, that with 
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Since 
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in particular, with 
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Or, with correlation matrix 
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where 
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where 
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and designate it through 
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From here for vector 
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where 
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Finally we receive that, with assigned Markov’s discrete normal random process of N order, with correlation function 
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System consists from 2N equations (18) and determine solution of problem of DSF synthesis, if as a 
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The stated process of LDSF synthesis as a matter of fact also represents a method of channel LDSF synthesis for modeling of normal processes with the set correlation-spectral characteristics. This method is generalization of synthesis methodic of the similar filters stated in [1], [2], [6], [8], since expressions received here used for direct calculation of coefficients of the general model of autoregression of moving average. In the specified literature – only special cases of synthesis: autoregression or moving average are mentioned.
IV. METHOD OF SYNTHESIS OF MULTICHANNEL DISCRETE SHAPING FILTER WITH AN ARBITRARY INTERCHANNEL CORRELATION MATRIX
In the previous section is synthesized channel LDSF for modeling normal Markov’s process of any order. In this section the problem of synthesis of  М-channel matrix DSF were in each channel reproduced Markov’s process of  N order is solved. Integration of matrix and channel filters gives the general structure of multichannel (matrix) filter, where in output reproduced vector of Markov’s N-coherent process with the set interelement (interchannel) correlation matrix with size 
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After the nonlinear transformation 
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 which is carried out in each channels (for each component of vector normal process), we receive vector non-Gaussian process. This non-Gaussian process will have required marginal density of distribution, covariance matrix of vector’s elements and time-correlation function, determined by the corresponding expressions resulted in [4], [5], [8], [9], [10].
We will confined by the case when statistical characteristics of the casual normalized processes in each of the channels containing LDSF, are identical. Let the normalized correlation functions of any j channel 
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here 
[image: image116.wmf] 

1

,

1

,

i

i

x

h

=

, for 
[image: image117.wmf]i

"

, 
[image: image118.wmf])

(

П

j

D

 – normalized covariance matrix size j. Elements of this 
matrix are coefficients of correlation 
[image: image119.wmf](

)

(

)

(

)

П

j

l

П

p

m

П

p

m

D

M

p

m

r

r

,

,

 

;

,

,

2

,

1

,

 

,

K

=

=

-

; – algebraic adding of elements 
[image: image120.wmf](

)

П

j

l

r

,

 in determinant of matrix 
[image: image121.wmf])

(

П

j

D

. Then the matrix 
[image: image122.wmf])

(

П

j

D

will be correlation matrix of elements of vector 
[image: image123.wmf]{

}

M

i

i

i

M

i

,

2

,

1

,

,

,

,

,

h

h

h

K

=

η

 , and vectors itself 
[image: image124.wmf] 

,

M

i

η

 и 
[image: image125.wmf]M

n

,

 

η

 – independent with 
[image: image126.wmf]n

i

¹

. Now lets form vectors 
[image: image127.wmf](

)

M

k

k

k

k

U

U

U

,

2

,

1

,

,

,

,

,

K

=

M

U

, every its elements will determine as


[image: image128.wmf],

,

,

2

,

1

,

1

0

,

1

,

,

M

k

b

U

a

U

N

l

j

l

k

l

N

i

j

i

k

i

j

k

K

=

×

+

×

=

å

å

-

=

-

=

-

h


(20)

where coefficients 
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The colored noise of j channel 
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From here we receive, taking into account that 
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since with 
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where 
[image: image164.wmf]q

k

g

,

'

 orthogonal (independent) 
[image: image165.wmf]p

k

g

,

, since at forming 
[image: image166.wmf]q

k

g

,

'

 used random values 
[image: image167.wmf]q

k

,

1

-

x

, not included in 
[image: image168.wmf]p

k

g

,

. It means that 
[image: image169.wmf]q

k

g

,

 we have spread out on two orthogonal components [4], [10].

The output signal of  q  channel represents a output signal of linear system with operator L(.) and as the entrance signal of  q channel is the weighed sum of input signals 
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where 
[image: image176.wmf]p

k

U

,

 and 
[image: image177.wmf]q

k

U

,

'

 also orthogonal. At the same time average 
[image: image178.wmf]p

k

U

,

 and 
[image: image179.wmf]q

k

U

,

'

 is equal zero, and its dispersions is equal 1 because of properties of operator L(.). Therefore coefficient of correlation between 
[image: image180.wmf]p

k

U

,

 and 
[image: image181.wmf]q

k

U

,

 is equal


[image: image182.wmf][

]

[

]

[

]

.

'

1

'

1

)

(

)

(

,

,

2

)

(

,

,

)

(

,

,

2

)

(

,

)

(

,

,

П

l

k

П

p

q

p

l

p

k

П

p

q

p

l

p

k

П

p

q

p

l

q

k

П

p

q

p

k

П

p

q

p

l

q

k

r

r

U

U

M

r

U

U

M

r

U

U

r

U

r

M

U

U

M

-

-

-

-

-

-

×

=

=

×

×

-

+

×

×

=

=

ú

û

ù

ê

ë

é

×

÷

ø

ö

ç

è

æ

×

-

+

×

=

=

×


(26)

Thus the expression (19) actually determine the structure of matrix interchannel filter. There are vector normal white noise in the input and sequence of independent normal vectors with set correlation characteristics of its elements in output.

In particular, the DSF method was successfully applied for modeling of fluctuations of radars signals, reflected from the sea-surface with factorization of spatial-time correlation function of signals 
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 [4], [7], [10]. In this case for forming the casual vectors 
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where 
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On an input of the filter the sequence of normal vectors 
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where 
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, сhanging in time (on index i). In this case, MDSF can be used for modeling and non-stationary casual processes (which can be used as models of input signals of onboard control systems of flying devices). Capacity of accepted signals as approaching to object changes in time that corresponds  to change of a vector
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The structure of stationary МDSF, synthesized in this section, can be transformed into structure of non-stationary discrete forming filter (NDSF) with two periods of step-type discretization. In this case output signals of channels appear in time consistently. Such situation is observed, for example, at modeling of reflections from a spreading sea surface, when the period TРЛС  is much more than the period of step-type discontinuity 
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Indeed, in this case, it is necessary to model packs of impulses which  follows with period TРЛС , and inside packs distance between impulses is equal 
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 [2,7]. The similar situation is observed and during  modeling  of automatic control systems, which  works in impulse – pack mode.

Non-stationary MNDSF appears: at first, in change of weight coefficients 
[image: image203.wmf]i

l

C

,

, which identical equal zero with 
[image: image204.wmf]1

  

,

,

,

2

,

1

  

,

0

º

=

³

C

M

j

j

l

K

; at second, in change of 
[image: image205.wmf]j

i

,

s

 and 
[image: image206.wmf]j

i

U

,

 

 from index j and from temporary index i. If spatial correlation function 
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V. ANALYTICAL EXPRESSIONS FOR CALCULATION OF COEFFICIENTS OF SHAPING FILTERS OF THE FIRST AND SECOND ORDERS FOR CASUAL PROCESSES MODELING
Let's result the report of frequently occurring in practice design formulas for DSF [1], [2], [5], [7], [8]. For filters of 2-nd order, mentioned below correlation functions are correspond to differentiated Markov’s processes. 

1. The filter of 1-st order.

For correlation function of following type
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2. The filter of 2-nd order.

For correlation function of following type 
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For correlation function of following type 
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For correlation function of following type 
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The filter of the first order forms not differentiated process. Correlation functions of filters of the second order are written so, that on their outputs unitary differentiated processes are formed. 
VI. CONCLUSION
1. The most acceptable method, allowing to model casual processes without a methodical mistake is the method of nonlinear functional transformation of normal casual process. The basic disadvantage of this method is great volume of the spadework connected to calculation of algorithms parameters, thus it is required to make decision in process of realization of numerical calculations for separate particular problems. It makes practically impossible automation of process of synthesis of modeling algorithm.

2. The developed modified method of calculation of coefficients of shaping filters allows calculating coefficients for the general case of process of autoregression of moving average, that minimizes number of coefficients of difference equation realizing this filter, and, therefore, raises processing speed of modeling algorithm. The received closed expressions for filters’ coefficients allow automating the process of its synthesis.

3. For modeling of non-Gaussian processes the most effective method which is not containing methodical mistakes, is the method of functional transformation of non-Gaussian process. It is expedient for modeling of non-Gaussian vector process to use the linear multichannel shaping filter. The each channel of this filter contains the nonlinear functional converter, at that each component of vector is modeled by the channel. This algorithm is most effective when the factorization of interchannel correlation function (trellised) and time (channel) are assumed.
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