EXPERIMENTAL INTEGRATED DEVELOPMENT ENVIRONMENT “CONSTRUCTOR A3”

Alexander Goncharov

Saint-Petersburg State University of Aerospace Instrumentation,

Russia

INTRODUCTION

It can be stated, that software development for embedded control system is the most conservative part of the modern electronic engineering industry, oriented for embedded control solutions.

Embedded control systems has some special features as:

· known number of control channels;

· well determined algorithms for every channel;

· this system features are fixed during system design phase;

· structure and properties of code depends on kernel features.

Theory of Real Time micro Operational Systems (RTmOS), oriented for embedded multi channel control systems, was proposed in [1].

In accordance with theory RTmOS is a key element of modern software development technology. RTmOS is to be used as standardized structure of modern embedded control systems’ software that responds for task scheduling and inter-task communications. Also, RTmOS is a core of modern Integrated Development Environments (IDE).

There are two approaches for such type IDE: platform developer approach and third party approach. Platform developer approach supposes that IDE is developed as a part of microprocessor platform. As example, Visual DSP++ IDE with RTmOS VDK can be pointed, developed as a part of the microprocessor platform BlackFin (Analog Devices, USA). Third party approach supposes that RT kernel and IDE is developed by third party company for some microprocessor platform. For the microprocessor platform BlackFin third party companies have developed a set of RT kernel: ThreadX (Express Logic, USA), ucLinux (open source), NUCLEOUS (Accelerator Technology, USA), MicroC/OC-II (Micrium, USA). All pointed above IDE use a down-up technology of software development.

To increase a productivity of programmers next generation IDE has to support up-down technology in addition to down-up one. Experimental prototype of the next generation IDE “Constructor A3”, that based on RTmOS A3 was developed in Student Design Center of State University of Aerospace Instrumentation (Saint-Petersburg). This IDE uses a third party approach and was developed for PIC18xx microprocessor platform (Microchip, USA).

This report presents results of practical investigation of IDE “Constructor A3” and RTmOS A3.

I. RTmOS A3

The RTmOS A3 is oriented to be used for microcontroller family PIC18FXX8 Microchip Technology , Inc.

Three level dispatcher discipline is used, see fig. 1.1.v Dispatcher serves three task lines: high priority (HPL); low priority (LPL) and background (BGL).

High priority line is serviced with specified period Tst with FIFO discipline. So, it is combine scheduling discipline that has RR and FIFO features. The very first task in every task line service cycle is control task (CT). This is a system process that control duration of task from BGL. After this high priority user task (UT) line will be served.

When this work is finished, hardware interrupt task (IT), if they exist, will be serviced. And after this, background task (BGT) will be serviced.

This discipline can be interpreted as a mixture of RR and FIFO approaches. RR part is realized with system timer. It possible to control period of servicing HPL task with special parameter, that specified how frequently high priority task has to be serviced. System timer (Timer0) is used by dispatcher to control HPL period. Period of the timer can be changed with 1 micro second step during code development phase.

[image: image1.png]
Fig. 1.1. RTmOS A3 dispatcher processogram

A3 RT kernel is supported by peripheral driver library, system function library, system configuration macro library. RT kernel A3 supports: system initialization, process scheduling, inter task information exchange, resource sharing and hardware testing.

The PIC18xx family has a limited resources (data and program memory) in comparison with IP2K (Scenix) or BlackFin (Analog Devices) microprocessors. To minimize resource A3 kernel and standard library function were realized with Microchip Assembler MPASM.

Memory requirements to realize A3 are presented in table1.1.

Table 1.1

	Memory requirements for RTmOS A3

	Data memory
	Up to 256 bytes in bank 0

	System timer
	4 bytes

	System flags OS
	1 byte

3 byte EEPROM

	Task descriptors
	Up to 2 bytes per task

	Task call list
	16 bytes

	Task duration counter
	6 bytes

	Task context buffer
	8 bytes

	Restart code information
	1 byte

	Program data stek
	Up to 183 bytes

	Task flags
	1 bit per flag

The RTmOS A3 scheduling reaction time for high priority level task can be estimated as

Tr (Ki Tst,

 (1.1)
where I = 1….Number_Processes ;

 Ki – an individual parameter for every task.

Such approach provides flexibility of scheduling, because it is possible to change a period for every task in accordance with application.

II. INTEGRATED DEVELOPMENT ENVIRONMENT “CONSTRUCTOR A3”

“Constructor A3” is an experimental realization of the next generation IDE. This project has a goal a system integration of whole software development technology chain.

Software development technology chain with IDE “Constructor A3” is illustrated by fig. 2.1. “Constructor A3” supports both up-down and down-up software developing technology.

While using up-down technology, developer has to describe a code with high level language. This description is used by application generator to produce an assembler code from library functions. IDE provides some possibilities to control information exchange between processes. The final assembler code has a special structure that includes real time kernel A3, standard library functions and user functions. All libraries are created with standard MPLAB IDE (Microchip, USA).

As the result code is MPASM assembler text and can be corrected with IDE MPLAB. This is a realization of down-up branch of programming technology.

The IDE “Constructor A3” was used as a tool in some projects. The very first was an industrial controller ASK Lab, that was used in distributed control system of MAN scale. This controller was used also as a low level controller of autonomous robot FENIX-1.

Some improvements were introduced to initial concept of IDE “Constructor A3” and here the very last version is described.

III. HIGH LEVEL ALGORITHM DESCRIPTION

Modern IDE uses language “C” as a tool to described whole algorithm. As a rule it is also possible to insert assembler code. In such approach language “C” is used as a tool for high level algorithm description.

This DOWN-UP branch in IDE “Constructor A3” is supported with standard means of IDE MPLAB. So, user can use just assembler and macroassembler means to describe algorithm.

A3 RTmOS is a key element of "A3 Constructor" application generator and it poses some limitation on code structure and high level algorithm description. Driver modules and user application modules operate as RTmOS tasks.

For high level algorithm description a sort of special language was developed.

Programming paradigm that is realized with this language can be described as

From (data description_1) form (data description_2) with (task) depends on (condition), (3.1)
that supposes, that memory content is changed with some functions in accordance with some logic conditions.

Time structure of algorithm is provides with scheduling mechanism and some parameters has to be added to description (3.1). Present realization supposes, that user describes system timer period, priority level, parameter Ki , process flag and some other parameters for every process, explicitly. Example of description is presented in fig. 3.1.

Each description string specifies behavior of one of the OS tasks. Comment strings begin with symbol ";". Task description string consists of pairs parameter {value}. Some parameter values in this example are replaced with "…" because of their size. There are some necessary task parameters and others are optional.

Necessary parameters are:

· task (task name as it declared in modules library);

· prior (task priority, can be "high", "low" or "back");

· cond (task execution condition which is described with binary logical operations);

· period (task run period, it is useful for high priority tasks only);

· maxdur (maximal task duration, it is useful for non-high priority tasks only).

· Optional parameters are:

· from (task data sources which are global memory variables);

· form (task data targets which are global memory variables too);

· flag (binary flags, which are used by task);

· init (initialization procedure name, that is to be executed before task scheduler start).

User also specifies global variable allocation parameters and some specific parameters, such as MCU core clock frequency, OS timer period.

Information exchange between tasks is thread like type. This is very economy way to generate an mistakes and IDE “Constructor A3” use an matrix description for inter task information exchange, as it was proposed in [1].The user interface window is presented in fig. 3.2.

Every line of information exchange matrix is marked by task name. This line contains variables that are formed this task for tasks, described with columns. This interface provides possibility to look for specific variables with special searching engine.

; HIGH PRIORITY PROCESSES (this is a comment line)

form {RSi}
task {USARTRecTimer}
prior {high}
period {5}
cond {}

task {I2CSlaveTimer}
prior {high}
period {2}
cond {}
flag {SendFlag}

; LOW PRIORITY PROCESSES (this is a comment line)

form {RSi}
task {USARTRecInt}
prior {low}
maxdur {10}
cond {}

from {RSo}
task {USARTSendInt}
prior {low}
maxdur {10}
cond {}

from {CMDo}
task {I2CSlaveInt}
prior {low}
maxdur {10}
cond {}
form {CMDi} flag {SendFlag}

; BACKGROUND PROCESSES this is a comment line)

form {RSi}
task {USARTRec}
prior {back}
maxdur {10}
cond {EnableFlag}

from {RSo}
task {USARTSend}
prior {back}
maxdur {10}
cond {!(RunFlag)}

from {CMDo}
task {I2CSlaveSend}
prior {back}
maxdur {10}
cond {}

from {CMDi}
task {CMDDispRec}
prior {back}
maxdur {10}
cond {}
form {RSo, CMDCtrl} flag {…}

from {RSo}
task {SlaveCmdRun}
prior {back}
maxdur {50}
cond {}
form {…} init {SlaveCmdInit}

task {CMDDispTimeOut}
prior {back}
maxdur {10}
cond {}
flag {ErrFlag}

task {RBR_ResetReady5}
prior {back}
maxdur {10}
cond {(ErrFlag | SendFlag)} flag {…}

Fig. 3.1. Example of algorithm high level description

IV. ASK LAB INDUSTRIAL CONTROLLER

IDE “Constructor A3”was used in real project as a tool for developing software for ASK Lab controller, described in [2]. ASK Lab controller was developed in Student Design Center of State University of Aerospace Instrumentation (Saint-Petersburg). Controller has four PIC18XX microcontrollers, connected with I2C in-board net. Controller supports all industrial protocols.

In this project it was demonstrated, that proposed technology is a reliable tool, that increases software developer productivity in times. This technology provides possibility for parallel programming, because it was possible to distribute application codes and driver codes between software developers.

The same controller was used for autonomous robot Fenix-1 as a low level controller, that collects information from sensors, communicates with upper level realized with notebook, control motor with actor and so on. In this experimental project it was necessary change software with one-two week cycle in accordance with results of experiments. This work was done by student team that used IDE “Constructor A3”.

CONCLUSION

In conclusion author expresses thanks to A. Astapkovitch and A. Kasatkin for their help in this work.

REFERENCES

[1] Астапкович А. М. Микрооперационные системы реального времени.

[2] “Политехника ”, СПб., с.246.

[3] Rochev M. Heat consumption distributed information-control system. Proceedings Int. conf. “Education for all”, Saint-Petersburg , 2005.
Hardware interrupt

IT 1 __

Low Priority

Task line

UT_1

UT_K

High Priority

Task line

System Timer Period (Tst)

CT

CT

Back Ground

Task line

BGT 1

BGT 2

Time

Fig. 2.1 “Constructor A3” Structure

Developer

Interface

IDE

Constructor

A3

IDE

MPLAB

(Microchip, USA)

MPLAB

Standard

Developer

Interface

System

Libraries

User

Realloc-

catable code

APPLICATION

GENERATOR

“Constructor A3”

 System

RTmOS A3 Kernel

User

Software

Interrupt

level

ASK BUS 3.1

I2C

communication

protocols

Task

manager

User

Application

Codes

Device

drivers

Automatic

Generated

Code

Microchip assembler

High level

algorithm

description

; high prior

form {Rsi}	task {USARTRecTimer}	prior {high}	period {5}	cond {}

	task {I2CSlaveTimer}	prior {high}	period {2}	cond {SendFlag}

; low prior

form {RSi}	task {USARTRecInt}	prior {low}	maxdur {10}	cond {}

from {RSo}	task {USARTSendInt}	prior {low}	maxdur {10}	cond {}

from {CMDo}	task {I2CSlaveInt}	prior {low}	maxdur {10}	cond {}form {CMDi}	flag {SendFlag}

; background

form {RSi}	task {USARTRec}	prior {back}	maxdur {10}	cond {EnableFlag}

from {RSo}	task {USARTSend}	prior {back}	maxdur {10}	cond {!(RunFlag)}

Librarian

Inter

Task

Information

Exchange

Viewer

TARGET

HARDWARE

UP-DOWN

BRANCH

DOWN-UP

BRANCH

Fig. 3.2. Task interconnection description table

LCD

P18

МS

P18

SL

P18

SL

P18

SL

OPTO

DECAP

OPTO

DECAP

OPTO

DECAP

OPTO

DECAP

ALTERA

RTC

I2C

Keyb

D

I/O

D

I/O

A/D

I/O

D

I/O

CANbus 2.0, USART

RS232,/485 48285RS422, RS485

CANbus 2.0, USART

RS232,/485 RS485

CANbus 2.0, USART

RS232/485 RS485

CANbus 2.0, USART

RS232/485 RS485

CLK

RST

supervisor

RST

Q, 32.768

Q, 20MHz

BAT

3V

Fig.4.1 ASK Lab controller architecture

PAGE
39

