A NEW CONFIGURATION APPROACH

FOR EMBEDDED ROUTERS BASED NETWORK
Valeria Mazza, Nicola Micali

University of Catania,
Italy
Abstract

Known as "the Net", during the last decade Internet has become the most widespread internetworking example. The basic idea that lead to the born of Internet was so simple and powerful that nowadays different kind of devices are able to access the net, from supercomputers to embedded systems as smart appliances.
New applications, as video-conference and video-on-demand systems, provide the adoption of real time communication techniques; a typical constraint requires that packets have to be received within a small deadline. These requirements impose deep changes over Internet infrastructure; upcoming routers will be more complex and performing while smarter networks will be able to satisfy increasing users demand.
This paper will discuss how the performance and level of integration of contemporary embedded devices can be coupled with the functionality and cost benefits of Linux to provide developers with options never before available. We'll propose an innovative configuration methodology for an embedded router Ipv6 testbed and the adaptative scheduling algorithms it's based on.

I. INTRODUCTION
Internet Protocol [1] has been defined for more than a quarter of century, when Internet was still an university and research centres facility. From the nineties, a lot of changes made Internet become the commercial network we know today, and IP its base data communication protocol. Although IPv4 technology has been working very efficiently for many years, it is no longer able to overcome protocol limits. Till now Internet growth has been driven by computer market (from desktop PC to mainframes), but the situation is changing quickly today. Handheld and laptop market is undergoing a rapid growth because of continuous prices reductions and functionalities these devices provide, so now it represents a considerable portion of internet-connected devices. Giving users 24/7 network access from everywhere on the Earth using battery-powered devices, needs a simple, small, self-configuring and mobility-oriented connection protocol.
Network entertainment market seems to be in fast growing, too. Video on demand and hundred of channel TV will soon become a daily reality, but this is only the tip of the iceberg. This market will become of enormous dimensions, especially when televisions will gain access to the Internet.
Finally, the device control market will be the largest one: soon electric household appliances (i.e. freezing, washing-machine, heating, lighting and conditioning system etc.) could connect to the net. New intelligent devices generations will obtain an enormous power saving; it'll be very important to have simple, cheap, strong and very reliable solutions.
Unfortunately, IPv4 is unable to satisfy new network requirements such as the need of a larger address space. So, a new protocol needs to be defined to build a big and unique computer infrastructure able to provide the best interoperability among world telecommunication networks.
During the last decade several remedies were introduced to overcome IPv4 limits but the only long-term solution seems to be the IPv6 protocol. It is an incompatible evolution, proposed by the IETF (Internet Engineering Task Force), of the actual network protocol that will replace it in the next few years.
IPv6 tests (isole) represent a fundamental step to lead the build of the new Internet. This migration process has already started and the new protocol will be the main actor of the future. Our interest in developing an IPv6 embedded router and its remote configuration system comes from these considerations.

II. State of art

Internet is a packet-switched network where router function is to forward the received frames to the next linked node. Current commercial routing solutions are based on a low power, simple and closed, from the developer's point of view, systems resulting in an expensive, static and low flexibility device. Software based solution upgrades router functionalities from simple forwarding to a complete packet analysis platform, allowing single frame route management using network congestion information.
First possible choice falls upon Open Source, routing capable Operating Systems like Linux. This philosophy allows everyone to study and modify OS source codes. Although Linux integrates a lot of routing tools, their usage needs a deep network, protocol stack layers and OS infrastructure knowledge. Internet search engines provide a lot of information about this arguments but to acquire an entry-level know how is quite hard and sometimes results inadequate.
FreeBSD family could be the second possible choice. It's an Open Source OS stock quite similar to Linux one. A smaller amount of documentation provided and an higher usage difficulty, due to incomplete hardware support and smaller spread than Linux family, caused this solution withdrawal.
Turn a normal PC into a router using dedicated software solutions could be another approach. Many projects regarding this subject can be found on the Net, among them we can mention Linux Router Project, Zebra and Click Modular Router Project.
In this white paper we propose a full routing solution based on Soekris hardware device running Click Modular Router Project environment within a Linux operating system to manage network behaviour. This choice was motivated by the extensibility and flexibility increasingly required of routers, and the wide and growing interest over embedded oriented problematics.

III MOVING TOWARD AN EMBEDDEDSYSTEM: "SOEKRIS"
Soekris Engineering embedded system is a compact, low-power, low-cost, advanced communication board. Our IPv6 testbed is made up two different models of Soekris provided boards:net4501andnet4801.
Their common hardware specifications are:
· MicroATX mainboard form-factor;
· x86 architecture based CPU;
· on board soldered ram module;
· on board soldered 512Kbyte FLASH BIOS ROM;
· one 3.3V signalling only, limited power PCI slot;
· one miniPCI type ША socket;
· up to three Ethernet Controllers;
· one CompactFlash type 1/П bay;
· Serial Ports RS232;
· IDE connector header.
Differences among models are:
· CPU speed and clock frequency;
· RAM size;
· USB port.
Due to net4801 better performance, we have chosen it to absolve routing function while net4501 was used to generate host-side traffic.

[image: image9.jpg]

Fig. 1. Soekris net4801 overview

Main data storage for these devices is provided by a compact flash memory module. Due to size limitation a reduced and patched Linux ready to ran Click environment must be installed in order to satisfy real time system requirements.
OS installation on bootable floppy disk and USB flash disk was the first step to achieve this purpose. Using an external memory card adapter and a personal computer we were able to build an ad-hoc operating system distribution for all this kind of devices. Technically, OS components including bootloader, kernel and modules were customized to obtain a trade-off between OS image footprint and basic features included. The OS image previously rendered was then raw-copied via the adapter on the compact flash.
It's also important to notice that no input/output peripherals like keyboard, mouse and monitor are available. So, input/output mechanisms were handled using serial console access and network remote shell. A typical OS image size was around:

· 32 MB – full Linux distribution including libraries, tools and modules for complete hardware support.

· 64 MB – full Linux distribution plus Click Modular Router binaries.

· 128 MB – full Linux distribution plus two different Click element set.

Smaller images could be packed removing user oriented tools (e.g. usb tools, text editor...etc).

IV. CLICK MODULAR ROUTER PROJECT
Nowadays proprietary hardware solutions on the market provide low flexibility and expensive systems. This situation lured developers team to offer alternative solutions in order to bring easier interfaces between operating system and routing algorithms. As a result Click Modular Router was developed by M.I.T. LCS's Parallel and Distributed Operating Systems group.
Due to its architecture, real, standard-compliant Click routers are naturally and easily extensible because they are an interconnected collection of modules called "elements". Each element is a software component representing a unit of router processing and perform conceptually simple computations.

[image: image2.jpg]A sink

FromDevica(etht) H Countar H Discard_

Fig. 2. Click configuration
Figure 2 shows some elements connected together into a simple router configuration; elements appear as boxes while connection appear as arrows connecting the boxes together.
Click router configurations ran in the context of some driver, either at user level or in the Linux kernel:
· user level driver runs as an application at user level and it is useful for debugging and running repeatable tests. However, it cannot prevent the operating system networking stack from handling a packet;
· Linux kernel driver runs as a downloadable module in the Linux kernel and it can completely replace the OS networking
stack, changing a conventional PC into an arbitrary router.
Main difference between the two contexts is related to the performance impact. Kernel driver is able to handle a larger amount of packet compared to user level driver throughput. This is mainly due to stack crossing latency, an unnecessary procedure when running under kernel environment.
Click installation on Soekris embedded platform was carried out following these steps:
· Click source code compilation using a standard personal computer;
· Compiled binaries copy onto pre-patched and adapted Linux compact flash filesystem.

Click leverage is pointer-based Ethernet
frame handling. Thus "elements" can be considered as black-boxes which inputs are pointers corresponding to packet allocated memory and outputs represents the same pointers after inside-box modifications.
Unfortunately patches released to ensure a correct software operation can only be applied onto old kernel versions.
V. IPv6 TESTBED
An IPv6 testbed was built from the ground up to manage various test campaigns. Network topology was planned to create congestions in particular router output queues and validate packet scheduling algorithms.
[image: image3.jpg]

Fig. 3. Network topology

This network was planned to evaluate our routing algorithm performances under real time traffic load using previously described embedded system:
· • FIFO policy (First Input First Output): commonly used into packet-switched networks, it doesn't provide deadline check for internal queue scheduling. This policy was chosen as reference point for performance evaluation;
· EDF-policy (Earliest Deadline First) selects task sequence using a preemptive dynamic scheduling algorithm according packet absolute deadline. This policy provides a noticeable performance increase ensuring packet delivery before their deadline;
· AEDF#1-2 (Adaptive EDF): these policies are the adaptive versions of the previous one and they' re based on two important concepts:

· Adaptivity: closed loop algorithm parameters adjustment based on network response, it is only used on the traffic source router;
· Control: packet in-time receival and deadline trespassing validation, it is used in each network node to ensure correct packet delivery and to start, if necessary, source router adaptivity.
VI. CONFIGURATION PACKET
The possibility of configuring an ipv6 network via a remote interface stimulated new and interesting development opportunities, which constitute a significant aspect of this article.
The configuration packet is a special packet assembled ad hoc in order to permit configuration of both the Testbed and the scheduling algorithms.
VII. CONFIGURATION PACKET STRUCTURE
Prior to talk about Configuration Packet structure, is mandatory to explain the meaning of the term "flow" illustrated into RFC1809:
A flow is a group of packets coming from the same source, directed to the same destination and containing the same flow label.
Be aware that in the same path connecting a source and a destination, packets belonging to different flows can be found. This introductory note allows a better understanding of algorithms used forward in this article and in the same time clarifies some of the key concepts our work is based upon.
A configuration packet has a particularly simple and flexible structure, developed to be reused and to permit future expansions. This structure contains all the fields needed to operate the described scheduling algorithms. Packet structure has been defined with the following aspects in mind:
· Routing policy: depends on the algorithm implemented in each simulation job.
· Algorithm parameters: settings like queues size, variables controlling adaptivity, EDF and A-EDF algorithms are configurable.
· Flow parameters: each flow is marked by a flow ID, an hop deadline, an end to end deadline and a source and destination routers.
Each parameter in the configuration packet consist of a couple of integer values; the first value determines the variable name while the second one represents its value. For the sake of simplicity also fractional number are converted to integer values.
Packet structure is dynamic, in fact every parameter can be located at any point in data field; notwithstanding this, a set of rales must be followed to achieve correct configuration of algorithms and routers:
· Each configuration packet parameter must be characterized by a couple of integer values
· The integer value used to identify flow number (NumFlow variable) must be positioned before other flow parameters.
· Fields related to flow number i can be freely positioned, provided that they are kept separated from flow number i+1 fields.
[image: image4.png]/3

NE

Fig. 4 . Configuration-packet-parameter structure

The following figure is an example of a configuration packet that configures a specific router to work using A-EDF#1 scheduling algorithm. In order to attend packet scheme, each algorithm has an integer type identifier:
· FIFO: 1

· EDF: 2

· A-EDF#1:3
· A-EDF#2:4
Assigning a 0 value to algorithm identifier causes simulation job switching to idle state.
[image: image5.png]Router Alg Gueus Queue RTP RTP RTP RTP
b it T mn: dee

Fig. 5. Configuration Packet example

Configuration Packet size, according to defined structure, is variable. Its size depends on the number of the flows that will be forwarded.
Traffic differentiation between "magic packets" and standard frames is obtained using a special tag into "next header" field of the IPv6 header. Tag identifiers are:
· Hex value 0xFE for Configuration Packet;
· Hex value 0xFF for ТЕР (Time Expired Packet, used to start source router adaptivity section of the A-EDF algorithm)

During this first test period, Configuration Packets are generated via an home-made socket based application to provide a simple way modifying simulation job parameters. Future development regarding Configuration Packet generation is explained furthermore.
VIII. TEST TOOLKIT AND PERFORMANCE EVALUATION
Performance evaluation was achieved using a traffic generator and graphing toolkit. MGEN6 is a toolkit composed by an UDP/IPv6 traffic generator/receiver (mgen and dree) and various computing tools to create simulation logs (decode, meale, sgen, sgend, reale and txdelay).
Another important aspect is the host connection sequence. Hosts were connected to routers in such a way to create traffic congestion in specific router queues as shown in the following diagram.
[image: image6.jpg])

N~ 4

7/ D)<
/) T

PP

Fig. 6. Congestioned queue

Clock synchronization over network hosts is necessary to obtain an exact delay evaluation. To avoid problems related to clock drift due to approximate clock synchronization algorithm, we used the same host to generate and receive the traffic using a dummy target address.
Performance evaluation was based on a three-traffic-flows scheme, one marked as main and the other two as jamming flows (either real time or not).
The following graphs show the network operation assigning an higher priority to the main real time flow.
	14000
12000
10000
8000
6000
4000
2000

0
	1 1001 2001 3001 4001 5001 6001 7001 8001 9001[image: image1.jpg]

Fig. 7. FIFO delay

During congestion period using FIFO policy, delay increases quickly while throughput shows pits corresponding to jamming flow bursts.
	140
120
100
80
60
40
20

0
	1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 t

Fig. 8. FIFO throughput

Using EDF policy, delay shows peaks within an acceptable small range during congestion period while throughput maintains practically a constant rate.
[image: image7.png]50

an

11001 2001 3001 4001 5001 60O 7001 B001 FO0T

Fig. 9. EDF delay

[image: image8.png]it

a5
ar
%5
Y
a5
a5
s
a4

T
[N

5

9 17 25 3

PR S

Fig. 10. EDF Throughput

IX. CONCLUSIONS
After a careful packet configuration analysis and a large measurement campaign on the described IPv6 embedded-system-based testbed can be concluded that:
· EDF algorithm schedules earliest deadline flow assigning a dramatically high priority while other flows are heavily penalized.

· Introducing adaptive solutions ensures a
best-effort need-based service, sensible to
real time delivery requirements.

Future developments could involve a practical front-end to monitor step by step system evolution and a web interface to drive simulation job and configuration packet sending. Another upgrade could be wireless node network extension to provide mobile access to the network involving buffering techniques to ensure seamless handover procedures.
REFERENCES
[1] J. Postel, "Internet Protocol", RFC 791, Set.1981.
[2] R. Gilligan, E. Nordmark, "Transition Mechanisms for IPv6 Hosts and Routers", 1933, Ap. 1996.
[3] J.Postel, "User Datagram Protocol", RFC 768, Ago. 1980.
[4] S. Deering, R. Hinden /'Internet Protocol, Version 6 (IPv6) Specification", RFC 2460, Dec. 1998.
[5] www.6bone.nrt
[6] www.ietf.org
[7] V. Paxson, G. Almes, J. Mahdavi, M. Mathis, "Framework for IP Performance metrics", RFC 2330, May 1998.
[8] C.L. Liu, J.W. Layland, "Scheduling algorithms for multiprogramming in hard-real-time traffic environment", Journal of the Association for Computing Machinery, 1973.

[9] www.linux.org
[10] www.freebsd.org
[11] www.zebra.org
[12] http://www.pdos.lcs.mit.edu/click/

[13] http://long.ccaba.upc.es/
[14] A.S.Tanenbaum, "Computer Networks", П edition, Prentice Hall.
[15] Eddie Kohler, "The Click Modular Router", Febbraio 2001.
[16] Robert Morris, Eddie Kohler, John Jannotti e M. Frans Kaashoek, "The Click Modular Router", 17th ACM Symposium on Operating Systems Principles (SOSP '99), December 1999.
[17] Eddie Kohler, Robert Morris e Massimiliano Poletto, "Modular Components for Network Address Translation".
[18] Eddie Kohler, Benjie Chen, M. Frans Kaashoek, Robert Morris e Massimiliano Poletto, "Programming Language Techniques for Modular Router Configurations".
PAGE
52

