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INTRODUCTION
The automation of optimization process of using different resources in period of time is the problem that has been topical always, as almost all fields of human vital activities need for expert and effective resource management. For example, train operations on railway stations or airplane’s moving at airports, working of different control-gears on factories, using of manpower in the industry, allocation for teachers, learner and lessons among audiences in schools and universities and so on…

For multiobjective systems the problem of the competent resource management includes a few subgoals:
· Choosing a fastest optimization method;
· Implementation the chosen optimization algorithm for a certain process of using different resources in period of time;
· Development an appropriate penalty system that defines optimization criterions for investigated system and allows to estimate the vitality of new optimized model (variant of resources allocation in time);
· As the result of aforesaid is development of a program complex managing resources that realizes the chosen optimization algorithm and the certain penalty system.
For our task the arranged in time resources are audiences, teachers and groups of students. As interests of study process members are different so the task of creating timetable is multiobjective. In such a way the problem of optimization adds up to a looking for extremums of the multiobjective criterion function. 
I.  CHOOSING AN OPTIMIZATION METHOD

There are two main way for solving this task: looking over all variants and local-gradient method. They have  their own advantages and disadvantages and in each case it is better to think which one is more appropriate.
Let’s compare traditional and local-gradient methods for the problem of the studies schedule optimization. The main point of the problem is looking for a variant of the schedule with the minimal amount of fines (look at tab.1). It turned out, that for just 3 groups the searching of the best schedule is a quite difficult task.
Of course, the first solution, that crosses our mind, is ordinary looking over all possible variants. This method is the easiest per se and quite trivial in programming. To find optimal solution it is necessary to calculate the value of criterion function in all possible points, retaining a maximum from them. The main disadvantage is a huge calculating cost. But, if the solve could be found for reasonable period of time it means that the most optimal variant will be certainly find.
The second popular way is based on the gradient descent. First of all some accidental values of parameters are chosen, then these values are gradually changed to reach the maximum speed of criterion function increase. This algorithm is stopped when the local maximum has been found. So there is the necessity in extra resources to find the global extremum.
Gradient methods work very fast, but they don’t guarantee that the found solution is the most optimal. They are perfect for so-called unimodal tasks, where the criterion function has single local maximum (and it is global as well). As was discussed above our problem is multimodal and several-dimensional, i.e. there are many parameters. There isn’t a universal method that could quickly find absolutely precision solution for such tasks.
However, combining two mentioned above algorithms you could get at least approximate solution. And the precision will increase when the calculation time increases. The genetic algorithm is such a combined method. Mechanism of crossover and mutation in a certain way realizes “looking over all possible variants” and selection among the best variants – is “the gradient descent”.
II. REPRESENTATION THE OPTIMIZING AREA IN TERMS 
OF THE GENETIC ALGORITHM
As algorithm of optimization the Genetic Algorithm has been chosen. It is the adaptive method of searching for the best variant (value of function) on different arbitrarily selective segments of a criterion function. To realize the algorithm it’s necessary to represent each variant of time-tables as so-called “individual” with its own set of “chromosomes”.

“Chromosome” - is a numerical vector that is appropriate to the selected parameter. And the set of chromosomes for the individual assign the variant of schedule (task solution).

“Crossover” - is the operation allows to create one or some new chromosomes from two chromosomes of two other individuals by crossing part of chromosome’s genes from one individual with part of chromosome’s genes from second individual. This process is the same as in the nature. In such a way a new schedule consists of two parts. The First part is a half of all lessons taught in a University that is taken from one individual. The second part is a half is taken from another individual. Those two individuals are different only in allocation of lessons in audiences and working hours. So there aren’t conflicts during the process of combining those two halfs.
“Mutation” - is the direct transformation of a chromosome arbitrarily changing one or a few its positions (genes). There were realized two operations As the mutation there were realized two operations: 
1) shifting lessons between audiences of the same type not changing the working hours;
2) shifting lessons between different working hours not changing explotable audiences.
III. CHROMOSOME STRUCTURE
Let each individual from generation is represented by one chromosome that is set of lessons for a whole semester.
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So each gene “Lesson” is a way of allocation of a lesson on the schedule’s grid.
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, where I is a whole quantity of  lessons for all departments
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IV. IMPLEMENTATION OF THE GENETIC ALGORITHM
The traditional Genetic Algorithm is represented on the Fig.1. To apply the time-schedule’s optimization method based on the Genetic Algorithm (GA) it’s necessary to slightly modify foregoing classical GA. For example, the “inversion” isn’t used because of the chromosome structure’s peculiarity. The implementation of the Genetic Algorithm is represented on the Fig.2. The implementation of crossover and mutation algorithms for problem of the studies schedule optimization could be found on the Fig.3-4.
V. THE PENALTY SYSTEM

Below the version of penalty table used by the system. Of course parameter’s value could be changed. The vitality of the generated schedule is defined by amount of all these criterions. The less amount the better.
The penalty system              Table 1

	N
	Parameter
	Penalty

	1
	The penalty for moving between buildings of educational institution
	2000

	2
	One lesson is out of timetable’s grid
	2000

	4
	The penalty for the “gap” in the group’s schedule
	200

	5
	The penalty more then one consecutive “gaps” in the group’s schedule
	2000

	6
	The penalty for the “half-gap” is the half of the penalty for the one “gap”
	100

	8
	The penalty for more then one consecutive “gaps” in the group’s schedule on even OR odd week  
	2000

	9
	The penalty for more then one consecutive “gaps” in the group’s schedule on even AND odd week
	200

	10
	There isn’t first lesson in day’s schedule for a group
	60

	11
	The Saturday is the workday
	30

	12
	For each missing lesson of minimum quantity of lessons in a day
	150

	13
	For each extra lesson over the maximum quantity of lessons in a day
	150

	14
	Dissymmetry of a workday (different quantity of lessons for a certain day on even and odd week)
	60


VI. DESIGNING THE DATABASE FOR 
THE PROGRAM SYSTEM OPTIMIZING STUDIES SCHEDULE FOR INSTITUTE 
OF HIGHER EDUCATION

Lets pass on to designing Database model. There is the physical model of the Schedule Database on the fig 5. It will be used by program system to store and optimize variants of schedule (individuals). There are just 15 entities in the Database. Lets look at each of them.

1) The entity <Lesson_Name> contains information about name of all disciplines.
2) The entity <Lessons> contains information about all lessons concerned with each discipline.

3) The entity <Lesson_Type> defines 5 types of lessons (L - lection, Pr – practice, Lp – Laboratory paper, Cp – course project, Ct – course term)

4) The entity <Stream> define the set of groups that have the certain lesson <Lesson>.

5) The entity <Group_stream> realize the relationship M:M between Stream and Group.

6) The entity <Group> defines groups that are taught in a University

7) The entity <Constraints_Group> contains information about group’s  prohibitions.
8) The entity <Teacher_Lesson> realizes the relationship M:M between <Teachers> and <Lessons>.

9) The entity <Teachers> defines teachers from University

10) The entity <Constraints_Teacher> contains information about teacher’s prohibitions.

11) The entity <Audience_Lesson> defines the set of audiences where an example of the entity <Lesson> could be conducted.

12) The entity <Audiences> contains information about audiences in a University
13) The entity <Constraints_Audience> defines prohibitions for <Audiences>
14) The entity <Audience_Lesson> defines audiences where a lesson is conducted in.

15) The entity <Schedule> stores information about variants of schedule (individuals).
VII. ENCLOSURE
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Fig. 1. Flow chart of the Classical Genetic Algorithm
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Fig 2. Flow-chart of the Genetic Algorithm Implementation for the problem of the studies schedule optimization
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Fig.3. Flow-chart of the crossover algorithm
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Fig.4. Flow-chart of the mutation algorithm
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Fig.5. The physical model of the Schedule Database

VIII. CONCLUSIONS

The practical result of these research activities is the program system for optimization of studies schedule for Institutes of Higher Education realized on basis of Genetic Algorithm. This program has been developing so far and now is taking root in the SUAI. The problem is highly topical now for Universities and colleges in our country and abroad. For example in some places schedules are still formed manually, that is too laborious. Also there are many specific programs with low performance factor, that are badly adapted for other educational institutions. Foregoing investigations were made to develop the method, that allow to find acceptable solution for quite short period of time.
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Change audiences for current and  alternative lessons�
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