APPLYING THE GENETIC ALGORITHM FOR THE PROBLEM
OF THE STUDIES SCHEDULE OPTIMIZATION
Anton Moiseenko

Saint-Petersburg State University of Aerospace Instrumentation,

Russia
INTRODUCTION
The automation of optimization process of using different resources in period of time is the problem that has been topical always, as almost all fields of human vital activities need for expert and effective resource management. For example, train operations on railway stations or airplane’s moving at airports, working of different control-gears on factories, using of manpower in the industry, allocation for teachers, learner and lessons among audiences in schools and universities and so on…

For multiobjective systems the problem of the competent resource management includes a few subgoals:
· Choosing a fastest optimization method;
· Implementation the chosen optimization algorithm for a certain process of using different resources in period of time;
· Development an appropriate penalty system that defines optimization criterions for investigated system and allows to estimate the vitality of new optimized model (variant of resources allocation in time);
· As the result of aforesaid is development of a program complex managing resources that realizes the chosen optimization algorithm and the certain penalty system.
For our task the arranged in time resources are audiences, teachers and groups of students. As interests of study process members are different so the task of creating timetable is multiobjective. In such a way the problem of optimization adds up to a looking for extremums of the multiobjective criterion function.
I. CHOOSING AN OPTIMIZATION METHOD

There are two main way for solving this task: looking over all variants and local-gradient method. They have their own advantages and disadvantages and in each case it is better to think which one is more appropriate.
Let’s compare traditional and local-gradient methods for the problem of the studies schedule optimization. The main point of the problem is looking for a variant of the schedule with the minimal amount of fines (look at tab.1). It turned out, that for just 3 groups the searching of the best schedule is a quite difficult task.
Of course, the first solution, that crosses our mind, is ordinary looking over all possible variants. This method is the easiest per se and quite trivial in programming. To find optimal solution it is necessary to calculate the value of criterion function in all possible points, retaining a maximum from them. The main disadvantage is a huge calculating cost. But, if the solve could be found for reasonable period of time it means that the most optimal variant will be certainly find.
The second popular way is based on the gradient descent. First of all some accidental values of parameters are chosen, then these values are gradually changed to reach the maximum speed of criterion function increase. This algorithm is stopped when the local maximum has been found. So there is the necessity in extra resources to find the global extremum.
Gradient methods work very fast, but they don’t guarantee that the found solution is the most optimal. They are perfect for so-called unimodal tasks, where the criterion function has single local maximum (and it is global as well). As was discussed above our problem is multimodal and several-dimensional, i.e. there are many parameters. There isn’t a universal method that could quickly find absolutely precision solution for such tasks.
However, combining two mentioned above algorithms you could get at least approximate solution. And the precision will increase when the calculation time increases. The genetic algorithm is such a combined method. Mechanism of crossover and mutation in a certain way realizes “looking over all possible variants” and selection among the best variants – is “the gradient descent”.
II. REPRESENTATION THE OPTIMIZING AREA IN TERMS
OF THE GENETIC ALGORITHM
As algorithm of optimization the Genetic Algorithm has been chosen. It is the adaptive method of searching for the best variant (value of function) on different arbitrarily selective segments of a criterion function. To realize the algorithm it’s necessary to represent each variant of time-tables as so-called “individual” with its own set of “chromosomes”.

“Chromosome” - is a numerical vector that is appropriate to the selected parameter. And the set of chromosomes for the individual assign the variant of schedule (task solution).

“Crossover” - is the operation allows to create one or some new chromosomes from two chromosomes of two other individuals by crossing part of chromosome’s genes from one individual with part of chromosome’s genes from second individual. This process is the same as in the nature. In such a way a new schedule consists of two parts. The First part is a half of all lessons taught in a University that is taken from one individual. The second part is a half is taken from another individual. Those two individuals are different only in allocation of lessons in audiences and working hours. So there aren’t conflicts during the process of combining those two halfs.
“Mutation” - is the direct transformation of a chromosome arbitrarily changing one or a few its positions (genes). There were realized two operations As the mutation there were realized two operations:
1) shifting lessons between audiences of the same type not changing the working hours;
2) shifting lessons between different working hours not changing explotable audiences.
III. CHROMOSOME STRUCTURE
Let each individual from generation is represented by one chromosome that is set of lessons for a whole semester.

[image: image1.wmf]}

_

{

занятий

Список

Х

=

 or
[image: image2.wmf]}

{

>

<

=

Lesson

X

,
[image: image3.wmf]}

{

i

Lesson

Lesson

>=

<

So each gene “Lesson” is a way of allocation of a lesson on the schedule’s grid.

[image: image4.wmf]}

eAudience

Alternativ

,

LessonType

,

Discipline

,

Teacher

,

Stream

,

Location

{

Lesson

w

d

l

i

>

<

>

<

>

<

=

,

[image: image5.wmf]}

..

1

{

I

i

Î

"

, where I is a whole quantity of lessons for all departments

[image: image6.wmf]>

<

Location

- a way of allocation of a certain lesson on the schedule’s grid

[image: image7.wmf]l

Stream

 – a set of groups what a certain lesson is conducted for

[image: image8.wmf]>

<

Teacher

 - a set of teachers which conduct a certain lesson

[image: image9.wmf]d

Discipline

– a discipline, where a certain lesson is conducted

[image: image10.wmf]w

LessonType

 – a type of a certain lesson

[image: image11.wmf]>

<

eAudience

Alternativ

 - a set of analogous audiences where a certain lesson could be conducted

[image: image12.wmf]}

{

j

Location

Location

>=

<

,

[image: image13.wmf]}

..

1

{

J

j

Î

"

, where J- a quantity of hours for a lesson per two weeks

[image: image14.wmf]}

Audience

{Time,

Location

j

>

<

=

, where Time is a number of lesson what a group is taught on. There is not more then 8 lessons a day.

[image: image15.wmf]>

<

Audience

 - a set of audiences required to conduct a certain lesson

[image: image16.wmf]}

{Audience

Audience

k

>=

<

,

[image: image17.wmf]..K}

{

k

1

Î

"

, where K- a quantity of audiences for a lesson

[image: image18.wmf]}

{Audience

Audience

a

k

Î

,

[image: image19.wmf]}

..

1

{

A

a

Î

"

, where A - a total quantity of audiences for the whole University.

[image: image20.wmf]}

{Stream

Stream

l

>=

<

,

[image: image21.wmf]}

..

1

{

L

l

Î

"

, where L – a total quantity of streams for all departments and all courses.

[image: image22.wmf]}

..

1

{

,

P

p

}

{Group

Stream

p

l

Î

"

=

, where P is a quantity of groups in a stream

[image: image23.wmf]..N}

{

n

},

{Group

Group

n

p

1

Î

"

Î

, where N is a total quantity of groups in an University

[image: image24.wmf]}

{Teacher

Teacher

v

>=

<

[image: image25.wmf]{1..V}

v

Î

"

, where V is a quantity of teachers required for a certain lesson

[image: image26.wmf]..T}

{

t

},

{Teacher

Teacher

t

v

1

Î

"

Î

, where T is a total quantity of teachers in an University

[image: image27.wmf]..D}

{

d

},

e

{Disciplin

Discipline

d

1

Î

"

>=

<

, where D is a total quantity of disciplines taught in an University.

[image: image28.wmf]}

paper"

Term

"

,

project"

Term

"

,

paper"

Laboratory

"

,

Lection"

"

,

Practice"

{"

LessonType

w

Î

, where W is a total quantity of lesson types taught in an University

[image: image29.wmf]}

{Audience

eAudience

Alternativ

z

>=

<

,

[image: image30.wmf]}

..

1

{

Z

z

Î

"

, where Z is a quantity of alternative audiences where a certain lesson could be conducted

[image: image31.wmf]}

{Audience

Audience

a

z

Î

IV. IMPLEMENTATION OF THE GENETIC ALGORITHM
The traditional Genetic Algorithm is represented on the Fig.1. To apply the time-schedule’s optimization method based on the Genetic Algorithm (GA) it’s necessary to slightly modify foregoing classical GA. For example, the “inversion” isn’t used because of the chromosome structure’s peculiarity. The implementation of the Genetic Algorithm is represented on the Fig.2. The implementation of crossover and mutation algorithms for problem of the studies schedule optimization could be found on the Fig.3-4.
V. THE PENALTY SYSTEM

Below the version of penalty table used by the system. Of course parameter’s value could be changed. The vitality of the generated schedule is defined by amount of all these criterions. The less amount the better.
The penalty system Table 1

	N
	Parameter
	Penalty

	1
	The penalty for moving between buildings of educational institution
	2000

	2
	One lesson is out of timetable’s grid
	2000

	4
	The penalty for the “gap” in the group’s schedule
	200

	5
	The penalty more then one consecutive “gaps” in the group’s schedule
	2000

	6
	The penalty for the “half-gap” is the half of the penalty for the one “gap”
	100

	8
	The penalty for more then one consecutive “gaps” in the group’s schedule on even OR odd week
	2000

	9
	The penalty for more then one consecutive “gaps” in the group’s schedule on even AND odd week
	200

	10
	There isn’t first lesson in day’s schedule for a group
	60

	11
	The Saturday is the workday
	30

	12
	For each missing lesson of minimum quantity of lessons in a day
	150

	13
	For each extra lesson over the maximum quantity of lessons in a day
	150

	14
	Dissymmetry of a workday (different quantity of lessons for a certain day on even and odd week)
	60

VI. DESIGNING THE DATABASE FOR
THE PROGRAM SYSTEM OPTIMIZING STUDIES SCHEDULE FOR INSTITUTE
OF HIGHER EDUCATION

Lets pass on to designing Database model. There is the physical model of the Schedule Database on the fig 5. It will be used by program system to store and optimize variants of schedule (individuals). There are just 15 entities in the Database. Lets look at each of them.

1) The entity <Lesson_Name> contains information about name of all disciplines.
2) The entity <Lessons> contains information about all lessons concerned with each discipline.

3) The entity <Lesson_Type> defines 5 types of lessons (L - lection, Pr – practice, Lp – Laboratory paper, Cp – course project, Ct – course term)

4) The entity <Stream> define the set of groups that have the certain lesson <Lesson>.

5) The entity <Group_stream> realize the relationship M:M between Stream and Group.

6) The entity <Group> defines groups that are taught in a University

7) The entity <Constraints_Group> contains information about group’s prohibitions.
8) The entity <Teacher_Lesson> realizes the relationship M:M between <Teachers> and <Lessons>.

9) The entity <Teachers> defines teachers from University

10) The entity <Constraints_Teacher> contains information about teacher’s prohibitions.

11) The entity <Audience_Lesson> defines the set of audiences where an example of the entity <Lesson> could be conducted.

12) The entity <Audiences> contains information about audiences in a University
13) The entity <Constraints_Audience> defines prohibitions for <Audiences>
14) The entity <Audience_Lesson> defines audiences where a lesson is conducted in.

15) The entity <Schedule> stores information about variants of schedule (individuals).
VII. ENCLOSURE

[image: image32.emf]Initialize primary

population

Calculate the fitness function for

individuals from population

Choise individuals

from the current

population

Executing crossover and

mutation to create new

descendant

Calculate the fitness

function for all individuals

Choose individuals for new

population

Is the final condition

eachieved

The solution is found

Yes

No

Begin

End

Initialize primary

population

Calculate the fitness function for

individuals from population

Choise individuals

from the current

population

Executing crossover and

mutation to create new

descendant

Calculate the fitness

function for all individuals

Choose individuals for new

population

Is the final condition

eachieved

The solution is found

Yes

No

Begin

End

Fig. 1. Flow chart of the Classical Genetic Algorithm

[image: image33.emf]Begin

t=0

B

0

 = {A

1

,A

2

,…,A

k

)

F

Ai

 = fit(A

i

),

i=1…k

F

t

 = fit(B

t

)

Cycle1

(i=1;i<=k;i++)

Cycle1

(the end)

Forming initial population of

k individuals (lesson's

timetable)

Calculation the fitnessof each

individual, where k is

quantity of individuals

Calculation the fitness

function for whole population

Primary moment of time

initialization

A

c

 = Get(B

t

)

Selection the Ac individual

from population

A

c1

 = Get(B

t

)

Choice the second individual

with crossover probability

Pc

A

c

= Crossing(A

c

,A

c1

)

Execution the crossover

operation

A

c

 = mutation(A

c

)

Execution the mutation

operation with mutation

probability Pm

A

c

 = inversion(A

c

)

Execution inversion operation

with invertion probabillity Pi

insert(B

t

+1,A

c

)

Put the obtained chromosome

in a new population

t=t+1

Is the condition of the

end executed?

Yes

End

Increase the number of the

current age

No

Fig 2. Flow-chart of the Genetic Algorithm Implementation for the problem of the studies schedule optimization

[image: image34.emf]I=GetCountOfLessons(A1)

A1,A2

Two individuals (variants of

timetables to be crossovered) are

exists.

NewVar=GetCountOfVars(Bt)+1

Definition the number of the new

timetable variant

Cycle N1

i=1;i<I/2;i++

Cycle N1

(end)

Cycle N2

j=1;j<=J;j++

J=GetCountOfTacts(A1.Lesson[i])

Cycle N2

(end)

AddToNewSchedule(A1[i].Tact[j],A1[i].Audience[j])

Cycle N1

i=I/2;i<=I;i++

Cycle N1

(end)

Cycle N2

j=1;j<=J;j++

J=GetCountOfTacts(A2.Lesson[i])

Cycle N2

(end)

AddToNewSchedule(A2[i].Tact[j],A2[i].Audience[j])

IsAudienceBusy

IsTeacherBusy

IsGroupBusy

(!IsAudienceFound||Teac

herBusy||GroupBusy)

(AudienceBusy &&

!(TeacherBusy||GroupBusy))

IsAudienceFound=LookForAudienceAmongPermitted

AddToNewSchedule(A1[i].Tact[j],A1[i].Audience[j])

Yes

NoNo

No

Begin

End

Defining the total quantity of

lessons

Cycle for the first half of lessons

taken from the first variant of

lessons allocation(individual)

Cycle for all times(tacts) when the

lesson is conducted

How many times is the lesson

conducted during two weeks

Add the lesson in the new created

individual

Defining if the audience is occupied

on the current tact in new

timetable

Defining if the group is busy on the

current tact in new timetable

Defining if the teacher is busy on

the current tact in new timetable

IsAudienceFound=false

Looking for a free audience for the

current lesson

Fig.3. Flow-chart of the crossover algorithm

[image: image35.emf]Begin

MakeGridTickIDAudienceIDLesson(NVar)

Get set of lessons codes conducted

in audiences for the whole day

CurrentAudience=GetCurrentAudience(y)

Cycle N1

for (int y=1;y<=MaxAudiences;y++)

Cycle N2

for (int x=1;x<=MaxTicks;x++)

CurrentTick=GetCurrentTick(x)

CurrentLesson=GetCurrentLesson(y,x)

!CurrentLesson

No

AlternativeAudience=GetAlternativeAudience(CurrentAudience)

AlternativeLesson=GetAlternativeLesson(NVar,

CurrentTick,AlternativeAudience)

ProhibitionForCurrentAudience=ProhibitionForCertainAudienceTi

ck(CurrentAudience,CurrentTick)

ProhibitionForAlternativeAudience=ProhibitionForCertainAudienc

eTick(AlternativeAudience,CurrentTick)

PermissionForCurrentLesson=IsLessonConductedInAudience(C

urrentLesson,AlternativeAudience)

PermissionForAlternativeLesson=IsLessonConductedInAudience

(AlternativeLesson,CurrentAudience)

(!(CurrentLesson==0 && AlternativeLesson==0)&&

 (AlternativeAudience)&&

 (ProhibitionForCurrentAudience!="P")&&

 (ProhibitionForAlternativeAudience!="P")&&

 (PermissionForCurrentLesson)&&

 (PermissionForAlternativeLesson))

MakeSubstitutionForAudiencesOfOneType(NVar,Cur

rentTick,CurrentAudience,AlternativeAudience,Curre

ntLesson,AlternativeLesson)

Yes

Cycle N2

(end)

Cycle N1

(end)

End

Yes

No

Cycle for all audiences

Get the code of the current audience

Get the code of the alternative

audience

Cycle for all times where lessons are

conducted

Get the current time

Get the code of the current lesson

If there aren't lessons on the

CurrentTick time in the

CurrentAudience audience then go

to the next time

Get the alternative audience for

CurrentTick time and

CurrentAudience audience taking

into account the current individual

Check if there is a prohibition for the

current audience in the current time

Check if there is a prohibition for the

alternative audience in the current

time

Check if there is a permission to

conduct the lesson in the alternative

audience

Check if there is a permission to

conduct an alternative lesson in the

current audience

If there aren't prohibitions for

audiences, then the mutation could

be executed

Change audiences for current and

alternative lessons

Fig.4. Flow-chart of the mutation algorithm

[image: image36.png]
Fig.5. The physical model of the Schedule Database

VIII. CONCLUSIONS

The practical result of these research activities is the program system for optimization of studies schedule for Institutes of Higher Education realized on basis of Genetic Algorithm. This program has been developing so far and now is taking root in the SUAI. The problem is highly topical now for Universities and colleges in our country and abroad. For example in some places schedules are still formed manually, that is too laborious. Also there are many specific programs with low performance factor, that are badly adapted for other educational institutions. Foregoing investigations were made to develop the method, that allow to find acceptable solution for quite short period of time.
REFERENCES

[1] Лима-ле-Фариа А. Эволюция без отбора: Автоэволюция формы и функции. Москва, "Мир", 1991

[2] Matthew Bartschi Wall “A Genetic Algorithm for Resource-Constrained Scheduling”, “Massachusetts Institute of Technology”, 1996

[3] Клеванский Н.Н., Макарцова Е.А., Костин С.А. Моделирование стратегии формирования расписания занятий ВУЗ’а средствами реляционной алгебры // Прикладные проблемы образовательной деятельности: Межвуз. сб. научн. тр. Воронеж: ВГПУ, 2003. – С.71-74.

[4] Клеванский Н.Н., Макарцова Е.А. Информационно-управляющая система учебным процессом ВУЗ’а // Вторая Всероссийская научная конференция молодых ученых и аспирантов «Новые информационные технологии. Разработка и аспекты применения». Тез. докл. – Таганрог: ТГРТУ, 1999. – С.23-24.

[5] Клемент Р. Генетические алгоритмы: почему они работают? Когда их применять?, Компьютерра, №11/1999

[6] ИКИ РАН (Space Research Institute). Генетические алгоритмы, май 1999, http://www.iki.rssi.ru/ehips/genetic.htm

[7] Исаев С.А. Популярно о генетических алгоритмах, март 2000, http://www.chat.ru/~saisa/ga/ga-pop.html

[8] Исаев С.А. Обоснованно о генетических алгоритмах, март 2000, http://www.chat.ru/~saisa/ga/text/part1.html

[9] Как составить качественное расписание, (с) 2001 InfoSchool, http://infoschool.at.tut.by/
PAGE
53

_1205514631.unknown

_1205515839.unknown

_1205521255.unknown

_1205522699.unknown

_1205765019.unknown

_1205765932.unknown

_1205765592.unknown

_1205740404.vsd
Terminator�

Process�

Predefined process�

Loop limit
(start or end)�

The height of the text box and its associated line increases or decreases as you add text. To change the width of the comment, drag the side handle.�

Decision�

Yes�

Begin�

t=0�

B0 = {A1,A2,�,Ak) �

FAi = fit(Ai),
i=1�k �

Ft = fit(Bt) �

Cycle1
(i=1;i<=k;i++)�

Cycle1
(the end)�

Forming initial population of k individuals (lesson's timetable)�

Calculation the fitnessof each individual, where k is quantity of individuals�

Calculation the fitness function for whole population�

Primary moment of time initialization�

Ac = Get(Bt)�

Selection the Ac individual from population�

Ac1 = Get(Bt)�

Choice the second individual with crossover probability Pc�

Ac = Crossing(Ac,Ac1)�

Execution the crossover operation �

Ac = mutation(Ac)�

Execution the mutation operation with mutation probability Pm�

Ac = inversion(Ac)�

Execution inversion operation with invertion probabillity Pi �

insert(Bt+1,Ac)�

Put the obtained chromosome in a new population�

t=t+1�

Is the condition of the end executed?�

No�

End�

Increase the number of the current age �

_1205740792.vsd
Process�

Data�

The height of the text box and its associated line increases or decreases as you add text. To change the width of the comment, drag the side handle.�

Loop limit
(start or end)�

Predefined process�

Decision�

Yes�

Terminator�

I=GetCountOfLessons(A1)�

A1,A2�

Two individuals (variants of timetables to be crossovered) are exists.�

NewVar=GetCountOfVars(Bt)+1�

Definition the number of the new timetable variant�

Cycle N1
i=1;i<I/2;i++�

Cycle N1
(end)�

Cycle N2
j=1;j<=J;j++�

J=GetCountOfTacts(A1.Lesson[i])�

Cycle N2
(end)�

AddToNewSchedule(A1[i].Tact[j],A1[i].Audience[j])�

IsAudienceBusy�

Cycle N1
i=I/2;i<=I;i++�

Cycle N1
(end)�

Cycle N2
j=1;j<=J;j++�

J=GetCountOfTacts(A2.Lesson[i])�

Cycle N2
(end)�

AddToNewSchedule(A2[i].Tact[j],A2[i].Audience[j])�

IsTeacherBusy�

IsGroupBusy�

(!IsAudienceFound||TeacherBusy||GroupBusy)�

No�

(AudienceBusy && !(TeacherBusy||GroupBusy))�

IsAudienceFound=LookForAudienceAmongPermitted�

AddToNewSchedule(A1[i].Tact[j],A1[i].Audience[j])�

No�

No�

Begin�

End�

Defining the total quantity of lessons�

Cycle for the first half of lessons taken from the first variant of lessons allocation(individual)�

Cycle for all times(tacts) when the lesson is conducted�

How many times is the lesson conducted during two weeks�

Add the lesson in the new created individual�

Defining if the audience is occupied on the current tact in new timetable�

Defining if the group is busy on the current tact in new timetable�

Defining if the teacher is busy on the current tact in new timetable�

IsAudienceFound=false�

Looking for a free audience for the current lesson�

_1205740653.vsd
Terminator�

Predefined process�

The height of the text box and its associated line increases or decreases as you add text. To change the width of the comment, drag the side handle.�

Loop limit
(start or end)�

Decision�

No�

Yes�

Begin�

MakeGridTickIDAudienceIDLesson(NVar)�

Get set of lessons codes conducted in audiences for the whole day�

CurrentAudience=GetCurrentAudience(y)�

Cycle N1
for (int y=1;y<=MaxAudiences;y++)�

Cycle N2
for (int x=1;x<=MaxTicks;x++)�

CurrentTick=GetCurrentTick(x)�

CurrentLesson=GetCurrentLesson(y,x)�

!CurrentLesson�

Yes�

AlternativeAudience=GetAlternativeAudience(CurrentAudience)�

AlternativeLesson=GetAlternativeLesson(NVar,CurrentTick,AlternativeAudience)�

ProhibitionForCurrentAudience=ProhibitionForCertainAudienceTick(CurrentAudience,CurrentTick)�

ProhibitionForAlternativeAudience=ProhibitionForCertainAudienceTick(AlternativeAudience,CurrentTick)�

PermissionForCurrentLesson=IsLessonConductedInAudience(CurrentLesson,AlternativeAudience)�

PermissionForAlternativeLesson=IsLessonConductedInAudience(AlternativeLesson,CurrentAudience)�

(!(CurrentLesson==0 && AlternativeLesson==0)&&
 (AlternativeAudience)&&
 (ProhibitionForCurrentAudience!="P")&&
 (ProhibitionForAlternativeAudience!="P")&&
 (PermissionForCurrentLesson)&&
 (PermissionForAlternativeLesson))�

MakeSubstitutionForAudiencesOfOneType(NVar,CurrentTick,CurrentAudience,AlternativeAudience,CurrentLesson,AlternativeLesson)�

Cycle N2
(end)�

Cycle N1
(end)�

End�

No�

Cycle for all audiences�

Get the code of the current audience�

Get the code of the alternative audience�

Cycle for all times where lessons are conducted�

Get the current time�

Get the code of the current lesson�

If there aren't lessons on the CurrentTick time in the CurrentAudience audience then go to the next time�

Get the alternative audience for CurrentTick time and CurrentAudience audience taking into account the current individual�

Check if there is a prohibition for the current audience in the current time�

Check if there is a prohibition for the alternative audience in the current time�

Check if there is a permission to conduct the lesson in the alternative audience�

Check if there is a permission to conduct an alternative lesson in the current audience�

If there aren't prohibitions for audiences, then the mutation could be executed�

Change audiences for current and alternative lessons�

_1205522798.unknown

_1205521454.unknown

_1205522645.unknown

_1205521274.unknown

_1205515986.unknown

_1205520981.unknown

_1205521200.unknown

_1205520767.unknown

_1205515942.unknown

_1205515598.unknown

_1205515683.unknown

_1205515799.unknown

_1205515630.unknown

_1205515531.unknown

_1205515550.unknown

_1205514687.unknown

_1205512802.unknown

_1205512897.unknown

_1205514575.unknown

_1205513002.unknown

_1205512828.unknown

_1205512155.unknown

_1205512634.unknown

_1205512108.unknown

_1196458088.vsd

