
 26

PROTOCOL MANAGER: DISTRIBUTED MANAGEMENT
OF UNIVERSITY'S OFFICE THROUGH WEBSERVICES

Giovanni Altamore, Paolo Giuffrida, Giuseppe Moscato

University of Catania

Catania, Italy
giovanni.altamore@alice.it, paologiuffrida@gmail.com, moscatog@yahoo.it

Abstract

In this article the development of a software to

manage the university's Office protocols will be
discussed. In order to develop the various university's
office, we used a system based on web services that
enable a simple and standard interface for
applications that will be implemented to manage the
system.

The structure of the server is based on a
network ring: each server has a database of its users,
a db for the protocols and it also keeps track of the
next server. The server has the addresses of all
servers connected to the network (in order to have an
easier and faster information flow). The ring
structure is mainly used in search protocols and
users. We have instead preferred a direct exchange of
information in the entry and exit process from the
ring.

For both server and client, the implementation
has been developed through .NET and C # language.

I. INTRODUCTION

A Web Service is defined by the W3C as "a

software system designed to support interoperable
machine-to-machine interaction over a network"1.
Web services are frequently just Web APIs that can
be accessed over a network, such as the Internet, and
executed on a remote system hosting the requested
services. Other approaches with nearly the same
functionality are Object Management Group's
(OMG) Common Object Request Broker
Architecture (CORBA), Microsoft's Distributed
Component Object Model (DCOM) or SUN's
Java/Remote Method Invocation (RMI).

The W3C Web service definition encompasses
many different systems, but in common usage the
term refers to clients and servers that communicate
over the HTTP protocol used on the Web. Such

1 "Web Services Glossary" - W3C Working Group Note 11
February 2004 http://www.w3.org/TR/2004/NOTE-ws-gloss-
20040211/ Editors: Hugo Haas, W3C, Allen Brown, Microsoft
(until June 2002

services tend to fall into one of two camps: Big Web
Services and RESTful Web Services.

"Big Web Services" use XML messages that
follow the SOAP standard and have been popular
with traditional enterprise. In such systems, there is
often a machine-readable description of the
operations offered by the service written in the Web
Services Description Language (WSDL). The latter is
not a requirement of a SOAP endpoint, but it is a
prerequisite for automated client-side code
generation in many Java and .NET SOAP
frameworks (frameworks such as Spring, Apache
Axis2 and Apache CXF being notable exceptions).
Some industry organizations, such as the WS-I,
mandate both SOAP and WSDL in their definition of
a Web service.

More recently, RESTful Web services have
been regaining popularity, particularly with Internet
companies. These also meet the W3C definition, and
are often better integrated with HTTP than SOAP-
based services. They do not require XML messages
or WSDL service-API definitions.

II. PROTOCOL MANAGER ARCHITECTURE

To every office belonging to the university a

server is assigned; all servers are linked together
through a network ring (fig. 1).

 users. database
 protocols database

Fig.1.

 27

Each server has a database for office's users, a
db for the protocols, a database for the informations
on servers belonging to the ring and finally a db with
the information of the server (id, url, and url of the
next server).

To implement the database we used the XML
files because we need to have a simple configuration
and easy access to data.

Four Graphical User Interface (GUI) have
been performed in order to allow the management of
the system by the administrators and to access to data
of the network.

For each type of user (administrator
and normal user) we have created two types of GUI,
a Windows Forms application and an application
for Smart Handheld Device. The administrators
of the various offices can access the database and
modify them: they can insert or delete protocols or
users and search a specific protocol or user according
to the parameter they prefer (id, date, abstract,
signature ...).

III. SOFTWARE IMPLEMENTATION

In this section we analyze characteristics of the

server and of the client applications and the criteria
used for their implementation.

For both server and client, the implementation
has been developed through .NET and C # language.

Server
The structure of the network is a ring in which

each server can know the next server and the overall
structure of the network.

Each server has the following databases (XML):

Database.xml (protocols db)
Users.xml (users db)
me.xml (server info)
DataServer.xml (network info)

The file "Database.xml" is structured as follows:

<?xml version="1.0" encoding="utf-16"
standalone="yes" ?>

<protocols>
-<protocol>

<id></id>
<Year></Year>
<Date></Date>
<Department></Department>
<Signature></Signature>
<KeyWords></KeyWords>
<Abstract></Abstract>
<Validate></Validate>

</protocol>
</protocols>

The "id" identifies only a protocol, the

Validate field is a bool (true or false). The file
"Users.xml 'is structured as follows:

<?xml version="1.0" encoding="utf-16"

standalone="yes" ?>
<users>

<user>
<id></id>

<Name></Name>
<Surname></Surname>
<Password></Password>
<UrlServer></UrlServer>
<Admin></Admin>

</user>
</users>

The password is stored encrypting with MD5.

The file "me.xml" is structured as follows:

<?xml version="1.0" encoding="utf-16"
standalone="yes" ?>

<infos>
<me>

<id></id>
<url>/url>
<urlNext ><urlNext />

</me>
</infos>

And, finally, the file DataServer.xml is as

follows:

<?xml version="1.0" encoding="utf-16"
standalone="yes" ?>

<Servers>
<server>

<id></id>
<url></url>
<urlNext><urlNext />

</server>
</Servers>

Funct ions development
The structural features of the network are: a

function that allows the entry of the server in the ring
and a function that allows the exit.

An important aspect of these functions is to
change the file "DataServer.xml" and the file
"me.xml" of the previous server.

The file "DataServer.xml" describes the
network. It contains the general structure of the
network. When a server becomes part of the ring it
must be included in this database and the reference
"urlNext" of the previous server must be changed and
the file modified must be redistributed across the
network.

The steps to entry in the ring are:
− check if the field nextserver is setted;
− if nextserver == "" then there is a single

server;
− check if there is another server with the id

chosen;
− check if the database of the protocols id

already resent and otherwise create a new db;
− check if a users database exists and

otherwise create a new db;
− create the file me.xml with the settings of

the server;
− if you create the first server, you must

create the atabase server;
− if you do not create the first server, you

must receive "DataServer.xml" by the next server;
− receive DataServer.xml through

getDataServer(id, url, next) function;
− scroll the server database (except from the

server you are putting into the ring) and every server

 28

must save the new server db.
The exit function is perfectly dual to the entry

function.
The ring structure is used in the search

function through the network; when you want to
search a users or a protocols the request is transmitted
to the next server until you do not find something.

It is necessary to put into the various search
functions the URL of the server which call the
function, to avoid infinite loops in the network and to
know when the network ring of the servers is been
covered.

An example of a search function is
"getXbyY".

The "getXbyY" is so declared:

public string[] GetXbyY(string X,

string Y, string nome, string first Url)

The documentation is:

<summary>
It returns X, given Y
</summary>
<param name="X">X (what you want to

return)</param>
<param name="Y">Y (the key to find a

protocol) </param>
<param name="nome">nome (value of Y)

</param>
<param name="firstUrl">url of the first

server</param><returns>array with the
results</returns>

All these search functions use the library

"LinQ to perform queries on XML databases, for
example:

var query = from c in
XDocument.Load(Server.MapPath(InfoFile)

).
Element("infos")

Elements("me")
select c;

foreach (var ci in query)
(

nextServer = (string)ci.Element
("urlNext").Value;

)

The most important part to search in the

network is as follows:

if (!nextServer.Equals("") && !

nextServer.Equals(firstUrl))
{
// I send the request to the next

server
Funzioni.Server server1 = new

Funzioni.Server();
server1.Url = nextServer;
risultato.AddRange(server1.GetXbyY(X,

Y, nome, firstUrl));
}

In this way we check that the search is

transmitted only if there is not one server and if
the next server is the same server which made
the request.

An important aspect of this project is the
security: we have decided to use soap header to

manage the login.
The login function is as follows:

public myHeader sHeader;

/// <summary >
/// Method that controls the

authentication header
/// </summary>
/// <param name="firstUrl">url of the

first server that sends the request</param>
/// <returns>bool (checked) </returns>

[WebMethod (Description = "Method that

controls the authentication header")]
[SoapHeader("sHeader")]
public bool checkHeader(string

firstUrl)
{
string usr = sHeader.Username;
string pwd = sHeader.Password;
bool result;

result = AuthHere(usr, pwd);

if (result)
{
return true;
}
else
{
string nextServer = "";

var query3 = from c in

XDocument.Load(Server.MapPath(InfoFile)).
Element("infos")

Elements ("me")
select c;
foreach (var ci in query3)
{
next Server =

(string)ci.Element("urlNext") .Value;

}
if (!nextServer.Equals("") && !

nextServer.Equals(firstUrl))
{
Funzioni.Server service = new

Funzioni.Server();
service.Url = next Server;
Funzioni.myHeader header = new

Funzioni.myHeader();
header.Username = usr;
header.Password = pwd;
service.myHeaderValue = header;
try
{
result = service.checkHeader(firstUrl);
}
catch(System.Exception)
{
return false;
}
}
else
{
result = false;
}
}
return result;
}

/// <summary>
/// Local authentication
/// </summary>
/// <param name="usr">user id</param>
/// <param name="pwd">user password

(md5)</param>

 29

/// <returns></returns>
private bool AuthHere(string usr,

string pwd)
{
var query = from c in
XDocument.Load(Server.MapPath(DataUsers

)).Element("users"). Elements("user")
where (string)c.Element("id") .Value ==

usr & & (string)c.Element("Password").Value
== pwd select c;

if (query.Count() != 0) return true;
else return false;
}
Client
In GUI user authentication is as follows:

[SoapHeader("sHeader")]
private void entra_Click(object sender,

EventArgs e)
{
bool login = false;
Funz ioni.Server service = new

Funzioni.Server();
Funzioni.myHeader header = new

Funzioni.myHeader();
// bytes stream - Md5
Byte[] originalBytes;
Byte[] encodedBytes;
//user header
header.Username = log.Text; //username

dell'utente
System.Security.Cryptography.MD5CryptoS

erviceProvider x = new System.Security.
Cryptography.MD5CryptoServiceProvider();

originalBytes =
ASCIIEncoding.Default.GetBytes(psw.Text);
encodedBytes = x.ComputeHash(originalBytes);

StringBuilder strCriptata = new
StringBuilder();

for(int i=0; i<encodedBytes.Length; i++)
strCriptata.Append(encodedBytes[i].

ToString("x2"));
//pass header
header.Password = strCriptata.ToString();
service.myHeaderValue = header;
login=service.checkHeader(service.Url);
if (login &&
service.GetXbyUser("Admin",log.Text,ser

vice.Url)=="true")
{
FormPrincipale frmprin = new

FormPrincipale();
frmprin.Show() ;
this.Hide();
}
else
{
if (! login)
{
MessageBox.Show("Login/Password errati",

"Ufficio Protocolli", Mes sageBoxButtons.OK,
Mes sageBoxI con.Error) ;

}
else
{
MessageBox.Show("Non hai permessi

sufficienti per effettuare il login",
"Ufficio Protocolli", MessageBoxButtons.OK,
MessageBoxIcon.Error);

}
}
}

IV. GRAPHICAL USER INTERFACE (GUI)

Let's go now to analyze the graphical interface

of our simulator. The main window is shown in the
next picture.

We note first that the graphical interface
presents only two drop-down and, under these, a
great toolbar.

For each type of user (administrator and
normal user) we have created two types of GUI, a
Windows Forms application and an application for
Smart Handheld Device.

The start window of the Windows Form
Application is shown in fig. 2. and fig.3.

Fig. 2.

The window is dedicated to user login. Once
you logged the main menu will open. There are two
areas: one dedicated to manage the protocols and the
other to manage users.

Fig. 3.

In the protocols area there are three buttons

that allow connection to three forms: to enter a new
protocol, to search a protocol and to remove a
protocol.

In the area dedicated to user management the
buttons have functions similar to those relating to the
protocols: to enter a new user, to search a user by
name and surname, to search a user by id and to
delete user.

Below there are the windows forms linked to
each button (fig. 4 – fig. 12).

 30

Fig. 4.

Enter a new protocol
To insert into the database a new protocol all

the fields in the form must be complete: protocol
number, date (just click on the calendar), abstract,
keywords (chosen from a dropdown menu),
signature, and then the validate field.

Fig. 5.

Search a Protocol
To search for a specific protocol you must

write: in the first field the field of protocol that you
want returned (id, Year, Date, Signature, KeyWords,
Abstract, Validate), in the second the search criterion
(id, Year, Date, Signature, KeyWords, Abstract,
Validate) and the third the value of the criterion.

In the text to the right you will see the results.
An important aspect is that when you enter a

new protocol it is stored in the database of the server
you are connected, while the search is done on all
databases in the network.

Fig. 6.

Delete a Protocol
To delete a protocol from the database simply

enter the number (id) into the text area and press the
button "Delete" We will see now the form for the
management of users.

Fig. 7.

Enter a new user
To insert a new user in the database you must

complete all the fields and specify if the new user has
administrator permissions (checkbox
"administrator"). To insert a new user there is a
control on "id" which must be unique.

Fig. 8.

 31

To search a user into the databases of the
networks you must enter in the first field the field that
you want returned (id, UrlServer, Admin) and in the
other two fields Name and Surname. The result will
appear in the text on the right

Fig. 9.

Search a user by id
You can search by id.

Fig. 10.

Delete user
To delete a user you must enter user id and

click on "Delete."
In the Windows Forms application for a

normal user you have only the form to search
protocols or user. This is the main menu.

Fig. 11.

We have developed two applications for Smart
Handheld Device: the first dedicated to the
administrator of university's office and the another to
a normal user.

The functions are identical to those provided
by the Windows Form Application

Fig. 12.

V. CONCLUSION

The power and versatility of web services have

allowed us to imagine future scenarios to use our
software with enhancements that concern not only the
simple functionality but also the security. It would be
possible to use secure channels of communication
client/server to exchange information, from login to
the transition of data, using the encrypted data stored
in the DB.

Our clients use, as we have seen, the windows
form to create easy and intuitive GUI, but this
windows form do not allow interoperability between
systems. A possible solution would be to use Open
technology (python + GTK or java) to create
exportable GUI client.

The web services were born to be standard and
to enable the interoperability of systems

